Skip to main content
Log in

New Evidences of Key Factors Involved in “Silent Stones” Etiopathogenesis and Trace Elements: Microscopic, Spectroscopic, and Biochemical Approach

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The knowledge of the key factors involved in etiopathogenesis of the gallstone disease requires chemical, structural, and elemental composition analysis. The application of different complementary analytical techniques, both microscopic and spectroscopic, are aimed to provide a more comprehensive determination of the gallbladder calculi ultrastructure and trace element identification. High sensitivity techniques such as electron microscopy (SEM), Fourier transform infrared (FTIR), electron paramagnetic resonance (EPR) spectroscopy, and X-ray diffraction (XRD) along with biochemical analysis are used in a new attempt to investigate various factors which play a regulatory role in the pathogenesis of gallstones. The microstructure of different types of gallbladder stones has specific characteristics which are related to the elemental composition. The binding of metal ions with bile salts and bilirubin plays important roles in gallstone formation as revealed by FTIR spectrum of calcium bilirubinate complex in pigment gallstones. The EPR results demonstrated the generation of bilirubin free radicals and variation of its electronic structure and conjugation system in the skeleton of bilirubin molecule during complex formation. EPR spectra of pigment gallstones demonstrate the coexistence of four paramagnetic centers including stable bilirubin free radical, Mn2+, Cu2+, and Fe3+ with distinct magnetic parameters and well-resolved hyperfine structure in the case of Mn2+ ions. The result confirms a macromolecular network structure with proteins and the formation of bilirubin-coordinated polymer. Bilirubin and bilirubinate free radical complexes may play an important role in pigment gallstone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Festi D, Reggiani MLB, Attili AF, Loria P, Pazzi P, Scaioli E, Capodicasa S, Romano F, Roda E, Colecchia A (2010) Natural history of gallstone disease: expectant management or active treatment? Results from a population-based cohort study. J Gastroen Hepatol 25:719–724

    Article  Google Scholar 

  2. Venneman NG, Johannes van Erpecum K (2010) Pathogenesis of gallstones. Gastroenterol Clin N Am 39:171–183

    Article  Google Scholar 

  3. Chandran P, Kuchhal NK, Garg P, Pundir CS (2007) An extended chemical analysis of gallstone. Indian J Clin Biochem 22:145–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chowdhury AH, Lobo DL (2011) Hepatobiliary surgery: gallstones. Surgery (Oxford) 29:610–615

    Article  Google Scholar 

  5. Soloway RD, Trotman BW, Ostrow JD (1977) Pigment gallstones. Gastroenterology 72:167–182

    CAS  PubMed  Google Scholar 

  6. Alatise OI, Obiajunwa EI, Lawal OO, Adesunkanmi AR (2010) Particle-induced X-ray emission (PIXE) analysis of minor and trace elements in gallstones of Nigerian patients. Biol Trace Elem Res 134:13–24

    Article  CAS  PubMed  Google Scholar 

  7. Iordanidis A, Garcia-Guinea J, Giousef C, Angelopoulos A, Doulgerakis M, Papadopoulou L (2013) Characterization of gallbladder stones from cholelithiasis patients of northern Greece using complementary techniques. Spectrosc Lett 46:301–306

    Article  CAS  Google Scholar 

  8. Kaloustian J, De La Porte LP, El-Moselhy T, Lafont H, Portugal H (2005) Thermal analysis and microscopical characterization of cholesterol in gallstones. J Therm Anal Calorim 82:331–338

    Article  CAS  Google Scholar 

  9. Gümüş M, Yüksel H, Evliyaoğlu O, Kapan M, Bőyük A, Önder A, Aldemir M (2011) Effects of ellagic acid on copper, zinc and biochemical values in serum and liver of experimental cholestatic rats. Biol Trace Elem Res 143:386–393

    Article  PubMed  Google Scholar 

  10. Kaur T, Kaur S (2010) Pathophysiological conditions in cholelithiasis formation in North Indian population: spectroscopic, biophysical and biochemical study. Biol Trace Elem Res 138:79–89

    Article  CAS  PubMed  Google Scholar 

  11. Liu G, Xing D, Yang H, Wu J (2002) Vibrational spectroscopic study of human pigment gallstones and their insoluble materials. J Mol Struct 616:187–191

    Article  CAS  Google Scholar 

  12. Wu JG, Zhou XS, Xu Z, Shen T, Xu YZ, Li WH, Xu DF, Soloway RD, Wentrup-Byrne E, Xu ZH, Shi JS, Shen GR, Deng SQ, Li XF, Shi N (1997) A spectroscopic investigation of the formation mechanism of pigment gallstones. Biospectroscopy 3:381–391

    Article  CAS  Google Scholar 

  13. Qiao T, Ma R, Luo X, Yang L, Luo Z (2013) The systematic classification of gallbladder stones. Plos One 8(10):e74887. doi:10.1371/journal.pone.0074887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nusier M, Shawakfeh K, Otoom S (2004) Physico-chemical properties of gallstones. Asian J Chem 16:213–219

    CAS  Google Scholar 

  15. Qiao T, Ma RH, Luo XB, Luo ZL, Zheng PM, Yang LQ (2013) A microstructural study of gallbladder stones using scanning electron microscopy. Microsc Res Techniq. doi:10.1002/jemt.22185

    Google Scholar 

  16. Palchik NA, Moroz TN (2005) Polymorph modifications of calcium carbonate in gallstones. J Cryst Growth 283:450–456

    Article  CAS  Google Scholar 

  17. Lee T, Chen JG (2009) Biomimetic gallstone formation: crystallization of calcium carbonate by the evolving taurocholate-lecithin-cholesterol complex lipid system. Cryst Growth Des 9:3737–3748

    Article  CAS  Google Scholar 

  18. Liu XT, Hu J (2002) Relationship between bilirubin free radical and formation of pigment gallstone. World J Gastroenterol 8:413–417

    Article  CAS  PubMed  Google Scholar 

  19. Damian G, Cavalu S (2005) Comparative study of amide I and amide III bands of ovalbumin and bovine serum albumin by FTIR spectroscopy. Asian Chem Lett 9:3–7

    Google Scholar 

  20. Cavalu S, Simon V (2007) Proteins adsorption to orthopedic biomaterials-vibrational spectroscopy evidence. J Optoelectron Adv Mat 9:3297–3302

    CAS  Google Scholar 

  21. Ravnborg L, Teilum D, Rotb L, Pedersn I (1990) Gallbladder stones classified by chemical analysis of cholesterol content. Scand J Gastroentero 25:720–724

    Article  CAS  Google Scholar 

  22. Todorovic M, Djurdjic V, Mandic L (1991) Bilirubin determination in gall stones. Fresenius J Anal Chem 341:723–726

    Article  CAS  Google Scholar 

  23. Shareef KM, Omar LS, Garota SA (2009) Correlation between the chemical components of gallstones and sera of stone formers. Gomal J Med Sci 7:1–5

    Google Scholar 

  24. Jaraari AM, Jagannadharao P, Patil TN, Hai A, Awamy HA, El Saeity SO, Kafi EBA, El-Hemri MN, Tayesh MF (2010) Quantitative analysis of gallstones in Libyan patients. Libyan J Med 5:4627. doi:10.4176/091020

    Article  Google Scholar 

  25. Sarli L, Gafa M, Longinotti E, Carreras F, Pietra N, Peracchia A (1989) Cholesterol microlithiasis: bacteriology, gallbladder bile and stone composition. HPB Surg 1:283–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sikkandar S, Jayakumar S, Gunasekaran S, Renugadevi TS, Alwar B (2011) Study on the analysis of human gallstones using Fourier transform infrared spectroscopic technique. Int J Chem Tech Res 3:149–154

    CAS  Google Scholar 

  27. Ganapathi RG, Selvaraju R (2008) FTIR spectroscopic analysis of human gallstones. Rom J Biophys 18:309–316

    Google Scholar 

  28. Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. Wiley-Liss, New-York

    Google Scholar 

  29. Bassi N, Del Favero G, Meggiato T, Scalon P, Ghiro S, Molin M, Pilotto A, Vigneri S, Savarino V, Mela GS, Di Mario F (1994) Are morphology and composition of gallstones related? An X-ray diffraction study. Curr Ther Res 55:1169–1175

    Article  Google Scholar 

  30. Lee SK, Kim MH (2010) Natural history of gallstone; an important and old issue, but still debatable. J Gastroen Hepatol 25:651–652

    Article  Google Scholar 

  31. Polakovs M, Mironova-Ulmane N, Pavlenko A, Skvortsova V, Jakovlevs D (2013) Gallstones studies by EPR and EDX spectroscopies. Med Phys Balt States 11:24–27

    Google Scholar 

  32. Saqib A, Shaikh SS, Sodha JM (2014) Frequencies of gallstones in the patients attending surgical OPD at Isra Hospital Hyderabad. Professional Med J 21(2):386–390

    Google Scholar 

  33. Athanasiadou D, Godelitsas A, Sokaras D, Karydas AG, Dotsika E, Potamitis C, Zrevou M, Xantos S, Chatzitheodoridis E, Gooi HC, Becker U (2013) New insights into chemical and isotopic composition of human-body biominerals. I: cholesterol gallstones from England and Greece. J Trace Elem Med Biol 27(2):79–84

    Article  CAS  PubMed  Google Scholar 

  34. Channa NA, Khand FD, Bhanger MI (2008) Analysis of human gallstones by FTIR. Malaysian J Anal Sci 12:552–560

    Google Scholar 

  35. Soloway RD, Wu JG, Xu DF (1990) Pigment gallstones and secondary calcification of gallstones. In: Swobodnik W, Soloway RD, Ditschuneit H (eds) Gallstone disease; pathophysiology and therapeutic approaches. Springer Verlag, Berlin, pp 35–46

    Chapter  Google Scholar 

  36. Strasberg SM, Toth JL, Gallinger S, Harvey PRC (1990) High protein and total lipid concentration are associated with reduced metastability of bile in an early stage of cholesterol gallstone formation. Gastroenterology 98:739–746

    CAS  PubMed  Google Scholar 

  37. Gallinger S, Taylor RD, Harvey PRC, Petrunka CN, Strasberg SM (1985) Effect of mucous glycoprotein on nucleation time of human bile. Gastroenterology 89:648–658

    CAS  PubMed  Google Scholar 

  38. Sanikidzel T, Shengelia M, Chikvaidze E, Kiparoidze S, Gogebashvili N, Kkuppusamy P (2014) Mechanism of gallstones formation in women during menopause (EPR study). Curr Top Biophys 37:1–8

    Article  Google Scholar 

  39. Aparico S, Doty SB, Camacho NP, Paschalis EP, Spevak L, Mendelsohn R, Boskey AL (2002) Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcified Tissue Int 70:422–429

    Article  Google Scholar 

  40. Leuschner U, Güldütuna S, Hellstern A (1994) Pathogenesis of pigment stones and medical treatment. J Gastroen Hepatol 9:87–98

    Article  CAS  Google Scholar 

  41. Boskey AL (2003) Mineral analysis provides insights into the mechanism of biomineralization. Calcified Tissue Int 72:533–536

    Article  CAS  Google Scholar 

  42. Hussain SM (2013) Quantitative analysis of chemical composition of gallbladder stones among cholecystectomy of Iraqi patients. Am J Res Com 1:26–32

    Google Scholar 

  43. Salimi J, Moosavi S, Vatankhah S (2003) The concentration of heavy trace elements in pigment and cholesterol human gallstones: comparative studies by PIXE analysis. Iran J Radiat Res 1:93–97

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Dr. Marioara Moldovan from UBB Cluj-Napoca, Faculty of Chemistry and “Raluca Ripan” Institute of Chemistry, Romania, for the technical support in SEM analysis.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Cavalu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalu, S., Popa, A., Bratu, I. et al. New Evidences of Key Factors Involved in “Silent Stones” Etiopathogenesis and Trace Elements: Microscopic, Spectroscopic, and Biochemical Approach. Biol Trace Elem Res 168, 311–320 (2015). https://doi.org/10.1007/s12011-015-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0361-0

Keywords

Navigation