Biological Trace Element Research

, Volume 168, Issue 1, pp 44–60 | Cite as

The Variation with Age of 67 Macro- and Microelement Contents in Nonhyperplastic Prostate Glands of Adult and Elderly Males Investigated by Nuclear Analytical and Related Methods

  • Vladimir ZaichickEmail author


To clarify age-related changes of 67 macro- and microelement contents in prostate gland of adult and geriatric males, a quantitative measurement by five analytical methods was performed. The nonhyperplastic prostate glands of 65 subjects (European-Caucasian aged 21–87 years) were investigated by energy dispersive X-ray fluorescence (EDXRF), instrumental neutron activation analysis with high resolution spectrometry of short-lived radionuclides (INAA-SLR), instrumental neutron activation analysis with high resolution spectrometry of long-lived radionuclides (INAA-LLR), inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS). The prostates were obtained at autopsy from subjects who died from acute illness (cardiac insufficiency, stroke, embolism of pulmonary artery, alcohol poisoning) and trauma. None of the subjects had any symptoms of prostatic disease, and all prostates were classified as histologically normal. The combination of nuclear (EDXRF, INAA-SLR, and INAA-LLR) and inductively coupled plasma (ICP-AES and ICP-MS) analytical methods allowed estimation of the contents of 67 chemical elements and precisely determined the mass fraction of 54 elements in the tissue samples of nonhyperplastic adult and geriatric prostate glands. This work’s results reveal that there is a significant increase with age of Bi, Cd, Co, Fe, Hg, Pb, Sc, Sn, Th, U, and Zn mass fractions in the prostate tissue of healthy individuals of ages from 21 to 60 years, as well as an increase in Ba from age 61 up to 87 years. It implies that an age-related increase and excess in Ba, Bi, Cd, Co, Fe, Hg, Pb, Sc, Sn, Th, U, and Zn mass fraction in prostatic tissue may be one of the main factors in the etiology of benign prostatic hyperplasia (BPH) and prostate carcinoma (PCa).


Chemical elements Nonhyperplastic adult and geriatric prostate gland EDXRF INAA ICP-AES ICP-MS Age-related changes 


  1. 1.
    Bonkhoff H, Remberger K (1998) Morphogenesis of benign prostatic hyperplasia and prostatic carcinoma. Pathologe 19:12–20CrossRefPubMedGoogle Scholar
  2. 2.
    Schauer IG, Rowley DR (2011) The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 82:200–210PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Carson C, Rittmaster R (2003) The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 61(4 Suppl 1):2–7CrossRefPubMedGoogle Scholar
  4. 4.
    Lee KL, Peehl DM (2004) Molecular and cellular pathogenesis of benign prostatic hyperplasia. J Urol 172:1784–1791CrossRefPubMedGoogle Scholar
  5. 5.
    Lepor H (2005) Pathophysiology of benign prostatic hyperplasia in the aging male population. Rev Urol 7(Suppl 4):S3–S12Google Scholar
  6. 6.
    Soulitzis N, Karyotis I, Delakas D, Spandidos DA (2006) Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol 29:305–314PubMedGoogle Scholar
  7. 7.
    Minelli A, Bellezza I, Conte C, Culig Z (2009) Oxidative stress-related aging: a role for prostate cancer? Biochim Biophys Acta 1795:83–91PubMedGoogle Scholar
  8. 8.
    Przybyszewski WM, Rzeszowska-Wolny J (2009) Oxidative stress in prostate hypertrophy and carcinogenesis. Postepy Hig Med Dosw 63:340–350Google Scholar
  9. 9.
    Ho CKM, Habib FK (2011) Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol 8:29–41CrossRefPubMedGoogle Scholar
  10. 10.
    Meeks JJ, Schaeffer EM (2011) Genetic regulation of prostate development. J Androl 32:210–217PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Patel ND, Parsons JK (2014) Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J Urol 30:170–176PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Klaunig JE, Kamendulis LM, Hocevar BA (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38:96–109CrossRefPubMedGoogle Scholar
  13. 13.
    Zaichick V, Zaichick S (1999) Role of zinc in prostate cancerogenesis. In: Anke M et al (eds) Mengen und Spurenelemente. 19. Arbeitstagung. Friedrich-Schiller-Universitat, Jena, p 104–115Google Scholar
  14. 14.
    Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182CrossRefPubMedGoogle Scholar
  15. 15.
    Zaichick V (2004) INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem 262:229–234CrossRefGoogle Scholar
  16. 16.
    Zaichick V (2006) Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 269:303–309CrossRefGoogle Scholar
  17. 17.
    Toyokuni S (2008) Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life 60(7):441–447CrossRefPubMedGoogle Scholar
  18. 18.
    Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46CrossRefPubMedGoogle Scholar
  19. 19.
    Lee JD, Wu SM, Lu LY, Yang YT, Jeng SY (2009) Cadmium concentration and metallothionein expression in prostate cancer and benign prostatic hyperplasia of humans. J Formos Med Assoc 108:554–559CrossRefPubMedGoogle Scholar
  20. 20.
    Zaichick S, Zaichick V (2011) The Br, Fe, Rb, Sr, and Zn content and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy dispersive X-ray fluorescent analysis. X-Ray Spectrom 40:464–469CrossRefGoogle Scholar
  21. 21.
    Zaichick S, Zaichick V (2011) The effect of age on Ag, Co, Cr, Fe, Hg, Sb, Sc, Se, and Zn contents in intact human prostate investigated by neutron activation analysis. Appl Radiat Isot 69:827–833CrossRefPubMedGoogle Scholar
  22. 22.
    Zaichick V, Nosenko S, Moskvina I (2012) The effect of age on 12 chemical element contents in the intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res 147:49–58CrossRefPubMedGoogle Scholar
  23. 23.
    Zaichick S, Zaichick V, Nosenko S, Moskvina I (2012) Mass fractions of 52 trace elements and zinc trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 149:171–183CrossRefPubMedGoogle Scholar
  24. 24.
    Zaichick S, Zaichick V (2013) Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology 1:139–146CrossRefPubMedGoogle Scholar
  25. 25.
    Zaichick V, Zaichick S (2013) The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. Appl Radiat Isot 82:145–151CrossRefPubMedGoogle Scholar
  26. 26.
    Zaichick V, Zaichick S (2013) INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem 298:1559–1566CrossRefGoogle Scholar
  27. 27.
    Zaichick V, Zaichick S (2013) NAA-SLR and ICP-AES application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res 156:357–366CrossRefPubMedGoogle Scholar
  28. 28.
    Zaichick V, Zaichick S (2013) Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. Am J Anal Chem 4:696–706CrossRefGoogle Scholar
  29. 29.
    Zaichick V, Zaichick S (2014) Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res 2(2):1–9. doi: 10.4172/2327-4360.1000121
  30. 30.
    Hienzsch E, Schneider H-J, Anke M (1970) Vergleichende Untersuchungen zum Mengen- und Spurenelementgehalt der normalen Prostata, des Prostataadenoms und des Prostatakarzinoms. Z Urol Nephrol 63:543–546PubMedGoogle Scholar
  31. 31.
    Leissner KM, Fielkegard B, Tisell LE (1980) Concentration and content of zinc in human prostate. Investig Urol 18:32–35Google Scholar
  32. 32.
    Tohno S, Kobayashi M, Shimizu H, Tohno Y, Suwannahoy P, Azuma C, Minami T, Sinthubua A, Mahakkanukrauh P (2009) Age-related changes of the concentrations of select elements in the prostates of Japanese. Biol Trace Elem Res 127:211–227CrossRefPubMedGoogle Scholar
  33. 33.
    Tipton IH, Cook MJ (1963) Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys 9:103–145CrossRefPubMedGoogle Scholar
  34. 34.
    Tipton JH, Steiner RL, Foland WD, Mueller J, Stanley M (1954) USAEC-ORNL-Report-CF-54-12-66Google Scholar
  35. 35.
    Stitch SR (1957) Trace elements in human tissue. I. A semi-quantitative spectrographic survey. Biochem J 67:97–103PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Neslund-Dudas C, Kandegedara A, Kryvenko ON, Gupta N, Rogers C, Rybicki BA, Ping Dou Q, Mitra B (2014) Prostate tissue metal levels and prostate cancer recurrence in smokers. Biol Trace Elem Res 157:107–112PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Liebscher K, Smith H (1968) Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health 17:882–891CrossRefGoogle Scholar
  38. 38.
    Zaichick V, Zaichick S (2014) The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. J Clin Lab Investig Update 2(1):1–15CrossRefGoogle Scholar
  39. 39.
    Jaritz M, Anke M, Holzinger S (1998) Der Bariumgehalt verschiedener Organe von Feldhase, Wildschwein, Damhirsch, Reh, Rothirsch, Mufflon and Mensch. In: Anke M et al (eds) Mengen- und Spurenelemente. 18. Arbeitstagung. Friedrich-Schiller-Universität, Jena, p 467–474Google Scholar
  40. 40.
    Zaichick V, Zaichick S (2014) Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem 301:383–397CrossRefGoogle Scholar
  41. 41.
    Kubo H, Hashimoto S, Ishibashi A, Chiba R, Yokota H (1976) Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections. Med Phys 3:204–209CrossRefPubMedGoogle Scholar
  42. 42.
    Zaichick S, Zaichick V (2010) Method and portable facility for energy-dispersive X-ray fluorescent analysis of zinc content in needle-biopsy specimens of prostate. X-Ray Spectrom 39:83–89CrossRefGoogle Scholar
  43. 43.
    Schneider H-J, Anke M, Holm W (1970) The inorganic components of testicle, epididymis, seminal vesicle, prostate and ejaculate of young men. Int Urol Nephrol 2:419–427CrossRefGoogle Scholar
  44. 44.
    Schöpfer J, Drasch G, Schrauzer GN (2010) Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biol Trace Elem Res 134:180–187CrossRefPubMedGoogle Scholar
  45. 45.
    Ogunlewe JO, Osegbe DN (1989) Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer 63:1388–1392CrossRefPubMedGoogle Scholar
  46. 46.
    Guntupalli JNR, Padala S, Gummuluri AVRM, Muktineni RK, Byreddy SR, Sreerama L, Kedarisetti PC, Angalakuduru DP, Satti BR, Venkatathri V, Pullela VBRL, Gavarasana S (2007) Trace elemental analysis of normal, benign, hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 16:108–115CrossRefPubMedGoogle Scholar
  47. 47.
    Zaichick V, Zaichick S (2014) INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 90:62–73CrossRefPubMedGoogle Scholar
  48. 48.
    Banaś A, Kwiatek WM, Zając W (2001) Trace element analysis of tissue section by means of synchrotron radiation: the use of GNUPLOT for SRIXE spectra analysis. J Alloys Compd 328:135–138CrossRefGoogle Scholar
  49. 49.
    Forssen A (1972) Inorganic elements in the human body. I. Occurrence of Ba, Br, Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y and Zn in the human body. Ann Med Exp Biol Fenn (Finland) 50:99–162Google Scholar
  50. 50.
    Anspaugh LR, Robinson WL, Martin WH, Lowe OA (1973) Compilation of published information on elemental concentrations in human organs in both normal and diseased states. No. UCRL-51013Pt. 1971-1973, p 1–4Google Scholar
  51. 51.
    Jafa A, Mahendra NM, Chowdhury AR, Kamboj VP (1980) Trace elements in prostatic tissue and plasma in prostatic diseases of man. Indian J Cancer 17:34–37PubMedGoogle Scholar
  52. 52.
    Sangen H (1967) The influence of the trace metals upon the aconitase activity in human prostate glands. Jpn J Urol 58:1146–1159Google Scholar
  53. 53.
    Zaichick V, Zaichick S (2014) Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals 27:333–348CrossRefPubMedGoogle Scholar
  54. 54.
    Soman SD, Joseph KT, Raut SJ, Mulay GD, Parameswaran M, Pandey VK (1970) Studies of major and trace element content in human tissues. Health Phys 19:641–656CrossRefPubMedGoogle Scholar
  55. 55.
    Koch HJ, Smith ER, Shimp NF, Connor J (1956) Analysis of trace elements in tissue. I. Normal tissue. Cancer 9:499–511CrossRefPubMedGoogle Scholar
  56. 56.
    Oldereid NB, Thomassen Y, Attramadal A, Olaisen B, Purvis K (1993) Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J Reprod Fertil 99:421–425CrossRefPubMedGoogle Scholar
  57. 57.
    Belt TH, Irwin D, King EJ (1936) Silicosis and dust deposits in the tissues of person without occupational exposure to siliceous dusts. Can Med Assoc J 34:125–133PubMedCentralPubMedGoogle Scholar
  58. 58.
    Höffken B, Rausch-Stroomann JG (1969) Excretion of zinc in diabetics receiving penicillamine. Z Klin Chem Klin Biochem 7:4–7PubMedGoogle Scholar
  59. 59.
    Galván-Bobadilla AI, García–Escamilla RM, Gutiérrez-García N, Mendoza-Magaña ML, Rosiles-Martínez R (2005) Cadmium and zinc concentrations in prostate cancer and benign prostate hyperplasia. Rev Latinoam Patol Clin 52:109–117Google Scholar
  60. 60.
    Zaichick V (1997) Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. IAEA, Vienna, p 123–133Google Scholar
  61. 61.
    Zaichick V (2004) Losses of chemical elements in biological samples under the dry ashing process. Trace Elem Med (Moscow) 5(3):17–22Google Scholar
  62. 62.
    Korelo AM, Zaichick V (1993) Software to optimize the multielement INAA of medical and environmental samples. In: Activation Analysis in Environment Protection. Join Institute of Nuclear Research, Dubna, Russia, p 326–332Google Scholar
  63. 63.
    Marezynska A, Kulpa J, Lenko J (1983) The concentration of zinc in relation to fundamental elements in the diseases human prostate. Int Urol Nephrol 15:257–265CrossRefGoogle Scholar
  64. 64.
    Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS (1990) Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ach in 55 human cadavers. Environ Res 52:126–145CrossRefPubMedGoogle Scholar
  65. 65.
    Zaichick V, Zaichick S (2014) Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res 157:195–204CrossRefPubMedGoogle Scholar
  66. 66.
    Zaichick V, Zaichick S (2014) Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Adv Biomed Sci Eng 1(1):26–42Google Scholar
  67. 67.
    Zaichick V, Zaichick S (2014) Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 36:167–181PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Zaichick V (2014) The prostatic urethra as a Venturi effect urine-jet pump to drain prostatic fluid. Med Hypotheses 83:65–68CrossRefPubMedGoogle Scholar
  69. 69.
    Hienzsch E, Schneider H-J, Anke M, Hennig A, Groppel B (1979) The cadmium-, zinc-, copper-, and managanese-level of different organs of human beings without considerable Cd-exposure independence on age and sex. In: Anke M, Schneider H-J (eds) Kadmiumsymposium. Wissenschaftliche Beiträge der Friedrich-Schiller-Universität Jena, Jena, pp 276–282Google Scholar
  70. 70.
    Tisell LE, Fielkegard B, Leissner KM (1982) Zinc concentration and content of the dorsal, lateral and medical prostatic lobes and of periurethral adenomas in man. J Urol 128:403–405PubMedGoogle Scholar
  71. 71.
    Sunderman FW (1979) Mechanism of metal carcinogenesis. Biol Trace Elem Res 1:63–86CrossRefPubMedGoogle Scholar
  72. 72.
    Snow ET (1992) Metal carcinogenesis: mechanistic implications. Pharmacol Ther 53:31–65CrossRefPubMedGoogle Scholar
  73. 73.
    Chen XA, Cheng YE, Xiao H, Feng G, Deng YH, Feng ZL, Chen L, Han XM, Yang YJ, Dong ZH, Zheng R (2004) Health effects following long-term exposure to thorium dusts: a twenty-year follow-up study in China. Radioprotection 39:525–533CrossRefGoogle Scholar
  74. 74.
    Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100:9–16CrossRefPubMedGoogle Scholar
  76. 76.
    Martinez-Zamudio R, Ha HC (2011) Environmental epigenetics in metal exposure. Epigenetics 6:820–827PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Tokar EJ, Benbrahim-Tallaa L, Waalkes MP (2011) Metal ions in human cancer development. Met Ions Life Sci 8:375–401PubMedGoogle Scholar
  78. 78.
    Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–627PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Clancy HA, Sun H, Passantino L, Kluz T, Muñoz A, Zavadil J, Costa M (2012) Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics 4:784–793PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164PubMedCentralPubMedGoogle Scholar
  81. 81.
    Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2013) Metals and breast cancer. J Mammary Gland Biol Neoplasia 18:63–73PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Koedrith P, Kim H, Weon JI, Seo YR (2013) Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216:587–598CrossRefPubMedGoogle Scholar
  83. 83.
    Lansdown ABG (2013) The carcinogenicity of metals: human risk through occupational and environmental exposure. RSC Publishing, CambridgeGoogle Scholar
  84. 84.
    Tabrez S, Priyadarshini M, Priyamvada S, Khan MS, Na A, Zaidi SK (2014) Gene–environment interactions in heavy metal and pesticide carcinogenesis. Mutat Res 760:1–9CrossRefGoogle Scholar
  85. 85.
    Zhivin S, Laurier D, Guseva Canu I (2014) Health effects of occupational exposure to uranium: do physicochemical properties matter? Int J Radiat Biol 90:1104–1113CrossRefPubMedGoogle Scholar
  86. 86.
    Mocchegiani E, Muaaioli M, Giacconi R (2000) Zinc, metallothioneins, immune responses, survival and ageing. Biogerontology 1:133–143CrossRefPubMedGoogle Scholar
  87. 87.
    Ekmekcioglu C (2001) The role of trace elements for the health of elderly individuals. Nahrung 45:309–316CrossRefPubMedGoogle Scholar
  88. 88.
    High KP (2001) Nutritional strategies to boost immunity and prevent infection in elderly individuals. Clin Infect Dis 33:1892–1900CrossRefPubMedGoogle Scholar
  89. 89.
    Padro L, Benacer R, Foix S, Maestre E, Murillo S, Sanvicens E, Somoza D, Ngo J, Cervera P (2002) Assessment of dietary adequacy for an elderly population based on a Mediterranean model. J Nutr Health Aging 6:31–33PubMedGoogle Scholar
  90. 90.
    Vaquero MP (2002) Magnesium and trace elements in the elderly: intake, status and recommendations. J Nutr Health Aging 6:147–153PubMedGoogle Scholar
  91. 91.
    Sapota A, Daragó A, Taczalski J, Kilanowicz A (2009) Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. BioMetals 22:1041–1049CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Radionuclide Diagnostics DepartmentMedical Radiological Research CentreObninskRussia

Personalised recommendations