A Potential New Mechanism of Arsenic Carcinogenesis: Depletion of Stem-Loop Binding Protein and Increase in Polyadenylated Canonical Histone H3.1 mRNA

Abstract

Canonical histones are synthesized with a peak in S-phase, whereas histone variants are formed throughout the cell cycle. Unlike messenger RNA (mRNA) for all other genes with a poly(A) tail, canonical histone mRNAs contain a stem-loop structure at their 3′-ends. This stem-loop structure is the binding site for the stem-loop binding protein (SLBP), a protein involved in canonical histone mRNA processing. Recently, we found that arsenic depletes SLBP by enhancing its proteasomal degradation and epigenetically silencing the promoter of the SLBP gene. The loss of SLBP disrupts histone mRNA processing and induces aberrant polyadenylation of canonical histone H3.1 mRNA. Here, we present new data supporting the idea that the lack of SLBP allows the H3.1 mRNA to be polyadenylated using the downstream poly(A) signal. SLBP was also depleted in arsenic-transformed bronchial epithelial cells (BEAS-2B), which led us to hypothesize the involvement of SLBP and polyadenylated H3.1 mRNA in carcinogenesis. Here, for the first time, we report that overexpression of H3.1 polyadenylated mRNA, and knockdown of SLBP enhances anchorage-independent cell growth. A pcDNA-H3.1 vector with a poly(A) signal sequence was stably transfected into BEAS-2B cells. Polyadenylated H3.1 mRNA and exogenous H3.1 protein levels were significantly increased in cells containing the pcDNA-H3.1 vector. A soft agar assay revealed that cells containing the vector formed significantly higher numbers of colonies compared to wild-type cells. Moreover, small hairpin RNA for SLBP (shSLBP) was used to knockdown the expression of SLBP. Cells stably transfected with the shSLBP vector grew significantly more colonies in soft agar than cells transfected with a control vector. These data suggest that upregulation of polyadenylated H3.1 mRNA holds potential as a mechanism to facilitate carcinogenesis by toxicants such as arsenic that depletes SLBP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Daban JR (2003) High concentration of DNA in condensed chromatin. Biochem Cell Biol 81(3):91–99

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Strunnikov AV (2003) Condensin and biological role of chromosome condensation. Prog Cell Cycle Res 5:361–367

    PubMed  Google Scholar 

  3. 3.

    Davey CA et al (2002) Solvent-mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319(5):1097–1113

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Luger K et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Hacques MF et al (1990) Use of an immobilized enzyme and specific antibodies to analyse the accessibility and role of histone tails in chromatin structure. Biochem Biophys Res Commun 168(2):637–643

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Weber CM, Henikoff S (2014) Histone variants: dynamic punctuation in transcription. Genes Dev 28(7):672–682

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Dominski Z, Marzluff WF (1999) Formation of the 3′ end of histone mRNA. Gene 239(1):1–14

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Marzluff WF (2005) Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 17(3):274–280

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Tan D et al (2013) Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3’hExo ternary complex. Science 339(6117):318–321

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Whitfield ML et al (2004) SLBP is associated with histone mRNA on polyribosomes as a component of the histone mRNP. Nucleic Acids Res 32(16):4833–4842

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Bansal N et al (2013) Assembly of the SLIP1-SLBP complex on histone mRNA requires heterodimerization and sequential binding of SLBP followed by SLIP1. Biochemistry 52(3):520–536

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Iampietro CBJ, Wang X, Cody NA, Chin A, Lefebvre FA, Douziech M, Krause HM, Lécuyer E (2014) Developmentally regulated elimination of damaged nuclei involves a Chk2-dependent mechanism of mRNA nuclear retention. Dev Cell 29(4):468–481

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Whitfield ML et al (2000) Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol 20(12):4188–4198

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Zheng L et al (2003) Phosphorylation of stem-loop binding protein (SLBP) on two threonines triggers degradation of SLBP, the sole cell cycle-regulated factor required for regulation of histone mRNA processing, at the end of S phase. Mol Cell Biol 23(5):1590–1601

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    Koseoglu MM, Graves LM, Marzluff WF (2008) Phosphorylation of threonine 61 by cyclin a/Cdk1 triggers degradation of stem-loop binding protein at the end of S phase. Mol Cell Biol 28(14):4469–4479

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Krishnan N et al (2012) The prolyl isomerase Pin1 targets stem-loop binding protein (SLBP) to dissociate the SLBP-histone mRNA complex linking histone mRNA decay with SLBP ubiquitination. Mol Cell Biol 32(21):4306–4322

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Lanzotti DJ et al (2002) Developmental control of histone mRNA and dSLBP synthesis during Drosophila embryogenesis and the role of dSLBP in histone mRNA 3′ end processing in vivo. Mol Cell Biol 22(7):2267–2282

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Sullivan E et al (2001) Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. Genes Dev 15(2):173–187

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Sullivan KD, Steiniger M, Marzluff WF (2009) A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 34(3):322–332

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    (2004) IARC monographs on the evaluation of carcinogenic risks to humans, in some drinking-water disinfectants and contaminants, including Arsenic Lyon, France

  21. 21.

    Schuhmacher-Wolz U et al (2009) Oral exposure to inorganic arsenic: evaluation of its carcinogenic and non-carcinogenic effects. Crit Rev Toxicol 39(4):271–298

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Chiu H et al (2004) Does arsenic exposure increase the risk for liver cancer? J Toxicol Environ Health A 67(19):1491–1500

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Benbrahim-Tallaa L, Waalkes M (2008) Inorganic arsenic and human prostate cancer. Environ Health Perspect 116(2):158–164

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Rahman M, Ng J, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31(Suppl 1):189–200

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Wasserman GA et al (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115(2):285–289

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Chen Y et al (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239(2):184–192

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Tseng CH et al (2003) Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett 137(1–2):15–21

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Wasserman GA et al (2004) Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112(13):1329–1333

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. 29.

    Chen CJ et al (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25(1):53–60

    PubMed  Article  Google Scholar 

  30. 30.

    Kinniburgh DG, Kosmus W (2002) Arsenic contamination in groundwater: some analytical considerations. Talanta 58(1):165–180

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51(2):257–281

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Reuter S et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    Ott M et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Valko M et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Kile ML et al (2014) Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 9(5):774–782

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Brocato J et al (2014) Arsenic induces polyadenylation of canonical histone mRNA by down-regulating stem-loop-binding protein gene expression. J Biol Chem 289(46):31751–31764

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Smith AH et al (2009) Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J Expo Sci Environ Epidemiol 19(4):343–348

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1(3):222–228

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Brocato J, Costa M (2013) Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit Rev Toxicol 43(6):493–514

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Passantino L, Munoz AB, Costa M (2013) Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells. Metallomics 5(10):1357–1367

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Sun H et al (2011) Comparison of gene expression profiles in chromate transformed BEAS-2B cells. PLoS One 6(3):e17982

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    Chervona Y et al (2012) Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev 21(12):2252–2260

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392(6675):516–520

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Meeks-Wagner D, Hartwell LH (1986) Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44(1):43–52

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Funato K et al (2014) Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346(6216):1529–1533

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Lan F, Shi Y (2014) Histone H3.3 and cancer: a potential reader connection. Proc Natl Acad Sci USA. doi:10.1073/pnas.1418996111

  48. 48.

    Shah MA et al (2014) A global assessment of cancer genomic alterations in epigenetic mechanisms. Epigenetics Chromatin 7(1):29

    PubMed Central  PubMed  Article  Google Scholar 

  49. 49.

    Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9(1):15–26

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46(6):722–734

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Albig W, Doenecke D (1997) The human histone gene cluster at the D6S105 locus. Hum Genet 101(3):284–294

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Elsaesser SJ, Goldberg AD, Allis CD (2010) New functions for an old variant: no substitute for histone H3.3. Curr Opin Genet Dev 20(2):110–117

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  54. 54.

    Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a019364

  55. 55.

    Harada A et al (2014) Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Res 43(2):775–786

  56. 56.

    Wen D et al (2014) H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus 5(5):369–375

    PubMed  Article  Google Scholar 

  57. 57.

    Duarte LF et al (2014) Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 5:5210

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. 58.

    Barbieri E et al (2014) Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. Cancer Res 74(3):765–774

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Barbieri E et al (2013) A p53 drug response signature identifies prognostic genes in high-risk neuroblastoma. PLoS One 8(11):e79843

    PubMed Central  PubMed  Article  Google Scholar 

  60. 60.

    Bethke L et al (2008) Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Hum Mol Genet 17(6):800–805

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Glinsky GV et al (2004) Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 113(6):913–923

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. 62.

    Polo SE et al (2004) Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. Cancer Res 64(7):2371–2381

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Staibano S et al (2007) Chromatin assembly factor-1 (CAF-1)-mediated regulation of cell proliferation and DNA repair: a link with the biological behaviour of squamous cell carcinoma of the tongue? Histopathology 50(7):911–919

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Rai TS et al (2014) HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes Dev 28(24):2712–2725

    PubMed  Article  Google Scholar 

  65. 65.

    Jiao Y et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (NIH) grants ES010344, ES014454, ES000260, ES022935, ES023174, and ES005512.

Conflict of Interest

None

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chunyuan Jin or Max Costa.

Additional information

Jason Brocato and Danqi Chen contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brocato, J., Chen, D., Liu, J. et al. A Potential New Mechanism of Arsenic Carcinogenesis: Depletion of Stem-Loop Binding Protein and Increase in Polyadenylated Canonical Histone H3.1 mRNA. Biol Trace Elem Res 166, 72–81 (2015). https://doi.org/10.1007/s12011-015-0296-5

Download citation

Keywords

  • Stem-loop binding protein
  • Histone H3.1
  • Arsenic
  • Histone mRNA
  • Polyadenylation
  • Cell transformation