Skip to main content
Log in

Reduction of Oxidative Damage and Inflammatory Response in the Diaphragm Muscle of mdx Mice Using Iron Chelator Deferoxamine

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Whitehead NP, Yeung EW, Allen DG (2006) Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 33(7):657–662

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Simeonova PP, Luster MI (1995) Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-alpha response from alveolar macrophages. Am J Respir Cell Mol Biol 12(6):676–683

    Article  CAS  PubMed  Google Scholar 

  4. Vulcano M, Meiss RP, Isturiz MA (2000) Deferoxamine reduces tissue injury and lethality in LPS-treated mice. Int J Immunopharmacol 22(8):635–644

    Article  CAS  PubMed  Google Scholar 

  5. Chouraqui E, Leon A, Repesse Y, Prigent-Tessier A, Bouhallab S, Bougle D et al (2013) Deferoxamine blocks death induced by glutathione depletion in PC 12 cells. Neurotoxicology 37:221–230

    Article  CAS  PubMed  Google Scholar 

  6. Vlahakos D, Arkadopoulos N, Kostopanagiotou G, Siasiakou S, Kaklamanis L, Degiannis D et al (2012) Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif Organs 36(4):400–408

    Article  CAS  PubMed  Google Scholar 

  7. Bornman L, Rossouw H, Gericke GS, Polla BS (1998) Effects of iron deprivation on the pathology and stress protein expression in murine X-linked muscular dystrophy. Biochem Pharmacol 56(6):751–757

    Article  CAS  PubMed  Google Scholar 

  8. Stedman HH, Sweeney HL, Shrager JB, Maguirre HC, Panettieri RA, Petrof B et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539

    Article  CAS  PubMed  Google Scholar 

  9. Cullen MJ, Jaros E (1988) Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. Acta Neuropathol 77:69–81

    Article  CAS  PubMed  Google Scholar 

  10. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. PNAS 81(4):1189–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Torres LFB, Duchen LW (1987) The mutant mdx: inherited myopathy in the mouse. Brain 110(2):269–299

    Article  PubMed  Google Scholar 

  12. Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A (2008) Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 31(1):1–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fogagnolo Mauricio A, Minatel E, Santo Neto H, Marques MJ (2013) Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice. Clin Nutr 32(4):636–642

    Article  CAS  PubMed  Google Scholar 

  14. Taniguti AP, Pertille A, Matsumura CY, Santo Neto H, Marques MJ (2011) Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF-beta1 blocker. Muscle Nerve 43(1):82–87

    Article  CAS  PubMed  Google Scholar 

  15. Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586(7):2003–2014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. de Senzi Moraes Pinto R, Ferretti R, Moraes LH, Santo Neto H, Marques MJ, Minatel E (2013) N-acetylcysteine treatment reduces TNF-alpha levels and myonecrosis in diaphragm muscle of mdx mice. Clin Nutr 32(3):472–475

    Article  PubMed  Google Scholar 

  17. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42(4):318–343

    Article  CAS  PubMed  Google Scholar 

  18. Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17

    Article  CAS  PubMed  Google Scholar 

  19. Tidball JG, Wehling-Henricks M (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol 102(4):1677–1686

    Article  CAS  PubMed  Google Scholar 

  20. Hartel JV, Hudecki MS, Pollina CM, Gosselin LE (2001) Impact of prednisone on TGF-beta1 and collagen in diaphragm muscle from mdx mice. Muscle Nerve 24(3):428–432

    Article  CAS  PubMed  Google Scholar 

  21. Stevens ED, Faulkner JA (2000) The capacity of mdx mouse diaphragm muscle to do oscillatory work. J Physiol 522:457–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kondo H, Miura M, Nakagaki I, Sasaki S, Itokawa Y (1992) Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization. Am J Physiol 262(5):583–590

    Google Scholar 

  23. Dudley RW, Khairallah M, Mohammed S, Lands L, Des Rosiers C, Petrof BJ (2006) Dynamic responses of the glutathione system to acute oxidative stress in dystrophic mouse (mdx) muscles. Am J Physiol Regul Integr Comp Physiol 291(3):R704–R710

    Article  CAS  PubMed  Google Scholar 

  24. Messina S, Altavilla D, Aguennouz M, Seminara P, Minutoli L, Monici MC (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198(1):234–241

    Article  CAS  PubMed  Google Scholar 

  25. Peterson JM, Kline W, Canan BD, Ricca DJ, Kaspar B, Delfin DA et al (2011) Peptide-based inhibition of NF-kappaB rescues diaphragm muscle contractile dysfunction in a murine model of Duchenne muscular dystrophy. Mol Med 17(5–6):508–515

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl) 82(7):434–448

    Article  CAS  Google Scholar 

  27. Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17(3):386–396

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Frei B (2006) Iron chelating inhibits NF-κB-mediated adhesion molecule expression by inhibiting p22phox protein expression and NADPH oxidase activity. Arterioscler Thromb Vasc Biol. doi:10.1161/01.ATV.0000245820.34238.da

    PubMed Central  Google Scholar 

  29. Zhang WJ, Frei B (2003) Intracellular metal ion chelators inhibit TNFalpha-induced SP-1 activation and adhesion molecule expression in human aortic endothelial cells. Free Radic Biol Med 34:674–682

    Article  CAS  PubMed  Google Scholar 

  30. Dey S, Bindu S, Goyal M, Pal C, Alam A, Igbal MS, Kumar R et al (2012) Impact of intravascular hemolysis in Malaria on liver dysfunction involvement of hepatic free heme overload, NF-κB activation, and neutrophil infiltration. J Biol Chem 287(32):26630–26646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Moraes LHR, Bollineli RC, Mizobuti DS, Silveira LR, Marques MJ, Minatel E (2014) Effect of N-acetylcysteine plus deferoxamine on oxidative stress and inflammation in dystrophic muscle cells. Redox Rep. doi:10.1179/1351000214Y.0000000112

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants 08/50731-3 and 11/02474-4). A.B.M. and T.A.H. are the recipients of a CAPES fellowship, F.M.F was the recipient of a CAPES PNPD fellowship, and L.H.R.M. was the recipient of a FAPESP (grant 10/01087-4) fellowship.

Conflict of Interest

All the authors declare that they do not have any conflict of interest.

Statement of Authorship

LHRM conducted the study. LHRM, RRB, ABM, TAH, and FMF analyzed the data and performed the statistical analysis. EM participated in the design of the study and coordination. EM and LHRM helped draft the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Minatel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, L.H.R., de Burgos, R.R., Macedo, A.B. et al. Reduction of Oxidative Damage and Inflammatory Response in the Diaphragm Muscle of mdx Mice Using Iron Chelator Deferoxamine. Biol Trace Elem Res 167, 115–120 (2015). https://doi.org/10.1007/s12011-015-0290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0290-y

Keywords

Navigation