Skip to main content

Advertisement

Log in

Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress is associated with the generation of reactive oxygen species (ROS), which is supposed to be one of the mechanisms of arsenic-induced neurodegeneration. Mitochondria, being the major source of ROS generation may present an important target of arsenic-mediated neurotoxicity. Hence, we planned the study to elucidate the possible biochemical and molecular alterations induced by arsenic exposure in rat brain mitochondria. Chronic sodium arsenite treatment (25 ppm for 12 weeks) resulted in decreased activity of mitochondrial complexes I, II, and IV followed by increased ROS generation. There was decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rat brain further showing increased superoxide radical generation in mitochondria. The decrease in MnSOD activity might be responsible for the increased protein and lipid oxidation as observed in our study. Protein and messenger RNA (mRNA) levels of MnSOD and mitochondrial uncoupling protein 2 (UCP-2) were downregulated suggesting decreased removal of ROS in rat brain. Fourier transform infrared (FTIR) spectroscopy analysis revealed significant decrease in amide A, amide I, amide II, and Olefinic = CH stretching band area suggesting molecular alteration in proteins and lipids after arsenic treatment. The results of present study indicate that arsenic-induced disturbed mitochondrial metabolism, decreased removal of ROS, decrease in protein synthesis, and altered membrane lipid polarity and fluidity may be responsible for the mitochondrial oxidative damage in rat brain that may further be implicated as contributing factor in arsenic-induced neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen Y, Santella RM, Kibriya MG, Wang Q, Kappil M, Verret WJ, Graziano JH, Ahsan H (2007) Association between arsenic exposure from drinking water and plasma levels of soluble cell adhesion molecules. Environ Health Perspect 115:1415–1420. doi:10.1289/ehp.10277

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bienert GP, Schussler MD, Jahn TP (2008) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26. doi:10.1016/j.tibs.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  3. Vahidnia A, Van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832. doi:10.1177/0960327107084539

    Article  CAS  PubMed  Google Scholar 

  4. Pachauri V, Mehta A, Mishra D, Flora SJS (2013) Arsenic induced neuronal apoptosis in guinea pigs is Ca2+ dependent and abrogated by chelation therapy: role of voltage gated calcium channels. NeuroToxicol 35:137–145. doi:10.1016/j.neuro.2013.01.006

    Article  CAS  Google Scholar 

  5. Smith AH, Lingas E, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Org 78:1093–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, Nayak B, Pal A, Sengupta MK, Ahamed S, Hossain A, Basu G, Roychowdhury T, Das D (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53:542–551. doi:10.1002/mnfr.200700517

    Article  CAS  PubMed  Google Scholar 

  7. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Groundwater arsenic contamination: a global perspective with special emphasis to Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  8. Bhattacharjee P, Chatterjee D, Singh KK, Giri AK (2013) Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 216:574–586. doi:10.1016/j.ijheh.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh S, Dungdung SR, Chowdhury ST, Mandal AK, Sarkar S, Ghosh D, Das N (2011) Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress. Free Radic Biol Med 51:1893–1902. doi:10.1016/j.freeradbiomed.2011.08.01 9

    Article  CAS  PubMed  Google Scholar 

  10. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicol 24:747–753. doi:10.1016/S0161-813X(03)00029-9

    Article  CAS  Google Scholar 

  11. Rodriguez VM, Carrizales L, Jimenez-Capdeville ME, Dufour L, Giordano M (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55:301–308. doi:10.1016/S0361-9230(01)00477-4

    Article  CAS  PubMed  Google Scholar 

  12. Luo J, Qiu Z, Shu W, Zhang Y, Zhang L, Chen J (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–125. doi:10.1016/j.toxlet.20 08.10.029

    Article  CAS  PubMed  Google Scholar 

  13. Nagaraja TN, Desiraju T (1994) Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake. Hum Exp Toxicol 13:353–356. doi:10.1177/096032719401300511

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez VM, Jimenez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18. doi:10.1016/S0378-4274(03)00262-5

    Article  CAS  PubMed  Google Scholar 

  15. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S (2002) Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicol Lett 136:65–76. doi:10.1016/S0378-4274(02)00282-5

    Article  CAS  PubMed  Google Scholar 

  16. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH (2012) Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 86:923–933. doi:10.1007/s00204-012-0864-9

    Article  CAS  PubMed  Google Scholar 

  17. Dwivedi N, Flora SJ (2011) Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats. Food Chem Toxicol 49:1152–1159. doi:10.1016/j.fct.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Batandier C, Fontaine E, Keriel C, Leverve XM (2002) Determination of mitochondrial reactive oxygen species: methodological aspects. J Cell Mol Med 6:175–187. doi:10.1111/j.1582-4934.2002.tb00185.x

    Article  CAS  PubMed  Google Scholar 

  19. Martin Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922. doi:10.1007/s10495-007-0756-2

    Article  PubMed  Google Scholar 

  20. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi:10.1111/j.1471-4159.2006.03907.x

    Article  CAS  PubMed  Google Scholar 

  21. Oh SS, Sullivan KA, Wilkinson JE, Backus C, Hayes JM, Sakowski SA, Feldman EL (2012) Neurodegeneration and early lethality in SOD2-deficient mice: a comprehensive analysis of the central and peripheral nervous systems. Neuroscience 212:201–213. doi:10.1016/j.neuroscience.2012.03.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase versus p53: the mitochondrial center. Ann N Y Acad Sci 1201:72–78. doi:10.1111/j.1749-6632.2010.05612.x

    Article  CAS  PubMed  Google Scholar 

  23. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nature Med 9:1062–1068. doi:10.1038/nm903

    Article  CAS  PubMed  Google Scholar 

  24. Olsson TD, Wieloch T, Diano S, Warden CH, Horvath TL, Mattiasson G (2008) Overexpression of UCP2 protects thalamic neurons following global ischemia in the mouse. J Cereb Blood Flow Metab 28:1186–1195. doi:10.1038/jcbfm.2008.8

    Article  PubMed Central  Google Scholar 

  25. Tandon N, Roy M, Roy S, Gupta N (2012) Protective effect of Psidium guajava in arsenic-induced oxidative stress and cytological damage in rats. Toxicol Int 19:245–249. doi:10.4103/0971-6580.103658

    Article  PubMed Central  PubMed  Google Scholar 

  26. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in isolated brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137. doi:10.1046/j.1471-4159.1999.0731127.x

    Article  CAS  PubMed  Google Scholar 

  27. Kaur P, Radotra B, Minz RW, Gill KD (2007) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology 28:1208–1219. doi:10.1016/j.neuro.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  28. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 93:11853–11858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Akkas SB, Severcan M, Yilmaz O, Severcan F (2007) Effects of lipoic acid supplementation on rat brain tissue: an FTIR spectroscopic and neural network study. Food Chem 105:1281–1288. doi:10.1016/j.foodchem.2007.03.015

    Article  CAS  Google Scholar 

  31. Lowry OH, Rosenbrough NJ, Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  32. Severcan F, Sahin I, Kazanci N (2005) Melatonin strongly interacts with zwitter ionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim Biophys Acta 1668:215–222. doi:10.1016/j.bbamem.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  33. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Cat B: Enzym 7:207–221. doi:10.1016/S1381-1177(99)00030-2

    Article  CAS  Google Scholar 

  34. Lu TH, Su CC, Chen YW, Yang CY, Wu CC, Hung DZ, Chen CH, Cheng PW, Liu SH, Huang CF (2011) Arsenic induces pancreatic β-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett 201:15–26. doi:10.1016/j.toxlet.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  35. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104. doi:10.1007/s11010-010-0563-x

    Article  CAS  PubMed  Google Scholar 

  36. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493. doi:10.1126/science.283.5407.1488

    Article  CAS  PubMed  Google Scholar 

  37. Mehndiratta MM, Aggarwal P, Singhal RK, Munjal YP (2000) Mitochondrial cytopathies. J Assoc Phys Ind 48:417–420

    CAS  Google Scholar 

  38. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488. doi:10.1126/science.283.5407.1482

    Article  CAS  PubMed  Google Scholar 

  39. Choksi KB, Nuss JE, Boylston WH, Rabek JP, Papaconstantinou J (2007) Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free Radic Biol Med 43:1423–1438. doi:10.1016/j.freeradbiomed.2007.07.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Shila S, Kokilavani V, Subathra M, Panneerselvam C (2005) Brain regional responses in antioxidant system to alpha-lipoic acid in arsenic intoxicated rat. Toxicology 210:25–36. doi:10.1016/j.tox.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  41. Dwivedi N, Mehta A, Yadav A, Binukumar BK, Gill KD, Flora SJ (2011) MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats. Toxicol Appl Pharmacol 256:241–248. doi:10.1016/j.taap.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  42. Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809-815. doi: 0892-6638/97/0011 -0809

  43. Teshima Y, Akao M, Jones SP, Marban E (2003) Cariporide (HOE642), a selective Na + -H+ exchange inhibitor, inhibits the mitochondrial death pathway. Circulation 108:2275–2281. doi:10.1161/01.CIR.0000093277.20968.C7

    Article  CAS  PubMed  Google Scholar 

  44. Duval C, Negre-Salvayre A, Doglio A, Salvayre R, Penicaud L, Casteilla L (2002) Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells. Biochem Cell Biol 80:757–764. doi:10.1139/o02-158

    Article  CAS  PubMed  Google Scholar 

  45. Gutteridge JMC, Quinlan GJ (1983) Malondialdehyde formation from lipid peroxides in thiobarbituric acid test: the role of lipid radicals, iron salts and metal chelator. J Appl Biochem 5:293–299

    CAS  PubMed  Google Scholar 

  46. Del Razo LM, Styblo M, Cullen WR, Thomas DJ (2001) Determination of trivalent ethylated arsenicals in biological matrices. Toxicol Appl Pharmacol 174:282–293. doi:10.1006/taap.2001.9226

    Article  PubMed  Google Scholar 

  47. Voortman G, Gerrits J, Altavilla M, Henning M, van Bergeijk L, Hessels J (2002) Quantitative determination of faecal fatty acids and triglycerides by Fourier transform infrared analysis with a sodium chloride transmission flow cell. Clin Chem Lab Med 40:795–798. doi:10.1515/CCLM.2002.137

    Article  CAS  PubMed  Google Scholar 

  48. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120. doi:10.3109/10409239509085140

    Article  CAS  PubMed  Google Scholar 

  49. Susi H, Byler DM (1983) Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem Biophys Res Commun 115:391–397. doi:10.1016/0006-291X(83)91016-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial assistance for the present work was provided by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi (grant No SR/FT/LS-25/2012), India in the form of Fast Track Young Scientist project sanctioned to Vijay Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Soni, M. & Kumar, V. Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain. Biol Trace Elem Res 167, 121–129 (2015). https://doi.org/10.1007/s12011-015-0284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0284-9

Keywords

Navigation