Biological Trace Element Research

, Volume 167, Issue 2, pp 165–171 | Cite as

Correlation of manganese with thyroid function in females having hypo- and hyperthyroid disorders

  • Nusrat Shahab Memon
  • Tasneem Gul KaziEmail author
  • Hassan Imran Afridi
  • Jameel Ahmed Baig
  • Oan Muhammad Sahito
  • Shahnawaz Baloch
  • Muhammad Waris


The aim of present study was to compare the level of manganese (Mn) with thyroid functions, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxin (FT4) of females having hyper- (HPRT) and hypothyroid (HPOT) disorder. For comparative study, females of the same age group (16–30 years) having no thyroid disorders were selected as referents. The serum samples were acid digested prior to analysis by electrothermal atomic absorption spectrometry. The validity and accuracy of the methodology was checked by a certified sample. The resulted data indicated that the mean values of Mn in serum samples of females have hyperthyroidism was significantly higher than referent subjects (p < 0.01), while lower values of Mn was observed in serum samples of hypothyroid patients. The mean values of FT3 and FT4 were found to be lower while TSH higher is in HPRT patients than age-matched healthy control females (p = <0.01). The reverse resulted data of these thyroid hormones was observed in HPOT patients (0.003).


Manganese Thyroid-stimulating hormone Free triiodothyronine Free thyroxin Hyper- and hypothyroid disorders 16–30-year age group 


  1. 1.
    Demirel S, Tuzen M, Saracoglu S, Soylak M (2008) Evaluation of various digestion procedures for trace element contents of some food materials. J Hazard Mater 152(3):1020–1026CrossRefPubMedGoogle Scholar
  2. 2.
    Mendil D, Unal TF, Tuzen M, Soylak M (2010) Determination of trace metals in different fish species and sediments from the River Yeşilirmak in Tokat, Turkey. Food Chem Toxicol 48(5):1383–1392CrossRefPubMedGoogle Scholar
  3. 3.
    Wedler F (1994) Biochemical and nutritional role of manganese: an overview. In: Klimis-Tava Ntzis DJ (ed) Manganese in health and disease. CRC Press, Inc, Boca Raton, FL, USA, pp 2–37Google Scholar
  4. 4.
    Jarvisalo J, Olkinuora M, Kiilunen M, Kivisto H, Ristola P, Tossavainen A, Aitio A (1992) Urinary and blood manganese in occupationally nonexposed populations and in manual metal arc welders of mild steel. Int Arch Occup Environ Health 63:495–501CrossRefPubMedGoogle Scholar
  5. 5.
    Papavasiliou PS, Miller ST (1983) Generalized seizures alter the cerebral and peripheral metabolism of essential metals in mice. Exp Neurol 82:223–236CrossRefPubMedGoogle Scholar
  6. 6.
    Davis CD, Greger JL (1992) Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr 55(3):747–752PubMedGoogle Scholar
  7. 7.
    Mergler D, Baldwin M (1997) Early manifestations of manganese neurotoxicity in humans: an update. Environ Res 73:92–100CrossRefPubMedGoogle Scholar
  8. 8.
    Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for manganese. US Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  9. 9.
    Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicol 20:227–238Google Scholar
  10. 10.
    Zimmermann M, Molinari L, Spehl M (2001) Toward a consensus on reference values for thyroid volume in iodine-replete schoolchildren: results of a workshop on inter-observer and inter-equipment variation in sonographic measurement of thyroid volume. Eur J Endocrinol 3:213–220CrossRefGoogle Scholar
  11. 11.
    Delange F (2002) Iodine deficiency in Europe and its consequences: an update. Eur J Nucl Med Mol Imaging 29:404–416CrossRefGoogle Scholar
  12. 12.
    Gomes FC, Lima FR, Trentin AG, Moura Neto V (2001) Thyroid hormone role in nervous system morphogenesis. Prog Brain Res 132:41–50CrossRefPubMedGoogle Scholar
  13. 13.
    Martinez R, Gomes FCA (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 277:49311–49318CrossRefPubMedGoogle Scholar
  14. 14.
    Bernal J (2005) Thyroid hormones and brain development. Vitam Horm 71:95–122CrossRefPubMedGoogle Scholar
  15. 15.
    Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259CrossRefPubMedGoogle Scholar
  16. 16.
    Bizzarro MJ, Gross I (2004) Effects of hormones on fetal lung development. Obstet Gynecol Clin North Am 31:949–961CrossRefPubMedGoogle Scholar
  17. 17.
    Danzi S, Dubon P, Klein I (2005) Effect of serum triiodothyronine on regulation of cardiac gene expression: role of histone acetylation. Am J Physiol Heart Circ Physiol 289:H1506–H1511CrossRefPubMedGoogle Scholar
  18. 18.
    Grover GJ, Mellstrom K, Malm J (2005) Development of the thyroid hormone receptor beta-subtype agonist KB-141: a strategy for body weight reduction and lipid lowering with minimal cardiac side effects. Cardiovasc Drug Rev 23:133–148CrossRefPubMedGoogle Scholar
  19. 19.
    Trentin AG, Mendes de Aguiar CBN, Garcez RC, Alvarez-Silva M (2003) Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion. Glia 42:359–369CrossRefPubMedGoogle Scholar
  20. 20.
    Arnold AM, Anderson GW, McIver B, Eberhardt NL (2003) A novel dynamin III isoform is upregulated in the central nervous system in hypothyroidism. Int J Dev Neurosci 21:267–275CrossRefPubMedGoogle Scholar
  21. 21.
    Bernal J, Nunez J (1995) Thyroid hormones and brain development. Eur J Endocrinol 133(4):390–398CrossRefPubMedGoogle Scholar
  22. 22.
    Chan S, Kilby MD (2000) Thyroid hormone and central nervous system development. J Endocrinol 165:1–8CrossRefPubMedGoogle Scholar
  23. 23.
    Soldin OP, Aschner M (2007) Effects of manganese on thyroid hormone homeostasis: potential links. Neurotoxicol 28(5):951–956CrossRefGoogle Scholar
  24. 24.
    Muller Y, Rocchi E, Lazaro JB, Clos J (1995) Thyroid hormone promotes BCL-2 expression and prevents apoptosis of early differentiating cerebellar granule neurons. Int J Dev Neurosci 13:871–885CrossRefPubMedGoogle Scholar
  25. 25.
    Gomes FCA, Maia CG, de Menezes JRL, Moura Neto V (1999) Cerebellar astrocytes treated by thyroid hormone modulate neuronal proliferation. Glia 25:247–255CrossRefPubMedGoogle Scholar
  26. 26.
    Konig S, Moura Neto V (2002) Thyroid hormone actions on neural cells. Cell Mol Neurobiol 22:517–544CrossRefPubMedGoogle Scholar
  27. 27.
    Soylak M, Erdogan N (2006) Copper (II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. J Hazard Mater 137(2):1035–1041CrossRefPubMedGoogle Scholar
  28. 28.
    Espergham O, Ghaedi M, Niknam K, Kokhdan SN (2011) A cloud point extraction methodology for the determination of trace amounts of copper, cobalt, zinc and manganese by flame atomic absorption spectrometry using a new imidazole derivative. Fresenius Environ Bull 20(9 A):2350–2356Google Scholar
  29. 29.
    Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N et al (2009) Comparison of electrothermal and hydride generation atomic absorption spectrometry for the determination of total arsenic in broiler chicken. Food Chem 113:1351–1355CrossRefGoogle Scholar
  30. 30.
    Shah AQ, Kazi TG, Baig JA, Afridi HI, Kandhro GA, Khan S, Kolachi NF, Wadhwa SK (2010) Determination of total mercury in chicken feed, its translocation to different tissues of chicken and their manure using cold vapour atomic absorption spectrometer. Food Chem Toxicol 48:1550–1554CrossRefPubMedGoogle Scholar
  31. 31.
    Kandhro GA, Kazi TG, Afridi HI, Kazi N, Arain MB, Sarfraz RA et al (2008) Evaluation of iron in serum and urine and their relation with thyroid function in female goitrous patients. Biol Trace Elem Res 125:203–212CrossRefPubMedGoogle Scholar
  32. 32.
    Ghaedi M, Niknam K, Kokhdan SN, Soylak M (2013) Combination of flotation and flame atomic absorption spectrometry for determination, preconcentration and separation of trace amounts of metal ions in biological samples. Hum Exp Toxicol 32(5):504–512CrossRefPubMedGoogle Scholar
  33. 33.
    Ghaedi M, Niknam K, Taheri K, Hossainian H, Soylak M (2010) Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16. Food Chem Toxicol 48(3):891–897CrossRefPubMedGoogle Scholar
  34. 34.
    Mergler D, Huel G, Bowler R, Iregren A, Belanger S, Baldwin M et al (1994) Nervous system dysfunction among workers with long-term exposure to manganese. Environ Res 64:151–180CrossRefPubMedGoogle Scholar
  35. 35.
    Eder K, Kralik A, Kirchgessner M (1996) The effect of manganese supply on thyroid hormone metabolism in the offspring of manganese-depleted dams. Biol Trace Elem Res 55:137–145CrossRefPubMedGoogle Scholar
  36. 36.
    Ghayur S, Siddiqui S, Alam MM, Shaukat A, Khan A (2004) Spectrum of iodine deficiency in school children of Rawalpindi. Pak Armed Forces Med J (2001). 51:27–32Google Scholar
  37. 37.
    Kandhro GA, Kazi TG, Afridi HI, Kazi N, Baig JA, Arain MB, Shah AQ, Syed N, Kumar S, Kolachi NF, Khan S (2010) Interaction of copper with iron, iodine, and thyroid hormone status in goitrous patients. Biol Trace Elem Res 134:265–279CrossRefPubMedGoogle Scholar
  38. 38.
    Aschner M (2006) Manganese as a potential confounder of serum prolactin. Environ Health Perspect 114(A):458CrossRefGoogle Scholar
  39. 39.
    Schomburg L, Kohric J (2008) On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food Res 52(11):1235–1246CrossRefPubMedGoogle Scholar
  40. 40.
    Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharocotherapy 57(9):399–411CrossRefGoogle Scholar
  41. 41.
    Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P et al (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129PubMedCentralPubMedGoogle Scholar
  42. 42.
    Woolf A, Wright R, Amarasiriwardena C, Bellinger D (2002) A child with chronic manganese exposure from drinking water. Environ Health Perspect 110:613–616PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Esfandiari A, Gavaret JM, Lennon AM, Pierre M, Courtin F (1994) Sulfation after deiodination of 3,5,30-triiodothyronine in rat cultured astrocytes. Endocrinology 135:2086–2092PubMedGoogle Scholar
  44. 44.
    Fell JM, Reynolds AP, Meadows N, Khan K, Long SG, Quaghebeur G et al (1996) Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 347:1218–1221CrossRefPubMedGoogle Scholar
  45. 45.
    Aihara K, Nishi Y, Hatano S, Kihara M, Yoshimitsu K, Tekeichi N et al (1984) Zinc, copper, manganese, and selenium metabolism in thyroid disease. Am J Clin Nutr 40:26–35PubMedGoogle Scholar
  46. 46.
    Kawada J, Nishida M, Yoshimura Y, Yamashita K (1985) Manganese ion as a goitrogen in the female mouse. Endocrinol Jpn 32:635–643CrossRefPubMedGoogle Scholar
  47. 47.
    Wang D, Du X, Zheng W (2008) Alteration of saliva and serum concentration of manganese, copper, zinc, cadmium, and lead among career welders. Toxicol Lett 176:40–47PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Akinloye O, Adebayo TO, Oguntibeju OO, Oparind DP, Ogunyemi EO (2011) Effects of contraceptives on serum trace elements, calcium and phosphorus levels. West Indian Med J 60(3):308–315PubMedGoogle Scholar
  49. 49.
    Lu L, Zhang L, Li GJ, Guo W, Liang W, Zheng W (2005) Alteration of serum concentrations of manganese, iron, ferritin, and transferrin receptor following exposure to welding fumes among career welders. Neuro Toxicol 26:257–265Google Scholar
  50. 50.
    Ali EA, Tahssen YH, Saleh BOM (2007) Study of some trace elements in hyperthyroidism patients. Iraqi Postgrad Med J 6(2):113–117Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nusrat Shahab Memon
    • 1
  • Tasneem Gul Kazi
    • 1
    Email author
  • Hassan Imran Afridi
    • 1
  • Jameel Ahmed Baig
    • 1
  • Oan Muhammad Sahito
    • 1
  • Shahnawaz Baloch
    • 1
  • Muhammad Waris
    • 1
  1. 1.National Centre of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan

Personalised recommendations