Skip to main content
Log in

Deficient Zinc Levels and Myocardial Infarction

Association Between Deficient Zinc Levels and Myocardial Infarction: a Meta-analysis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study is to clarify the association between Zn levels and myocardial infarction (MI) using a meta-analysis approach. We searched articles in the PubMed, OVID, and ScienceDirect published as of November 2014. Thirteen eligible articles with 2886 subjects from 41 case–control studies were identified. Overall, pooled analysis indicated that subjects with MI had lower Zn levels than healthy controls (standardized mean difference (SMD) = −1.848, 95 % confidence interval (CI) = [−2.365, −1.331]). Further subgroup analysis found that subjects with MI had lower Zn levels than healthy controls in serum (SMD = −1.764, 95 % CI = [−2.417, −1.112]) and hair (SMD = −3.326, 95 % CI = [−4.616, −2.036]), but not in toenail (SMD = −0.396, 95 % CI = [−1.114, 0.322]). The subgroup analysis stratified by type of Zn measurement found a similar pattern in inductively coupled plasma-atomic absorption spectrometry (ICP-AAS) (SMD = −2.442, 95 % CI = [−3.092, −1.753]), but not in neutron activation analysis (NAA) (SMD = −0.449, 95 % CI = [−1.127, 0.230]). Lower Zn levels in MI patients were found both in male (SMD = −3.350, 95 % CI = [−4.531, −2.169]) and female (SMD = −2.681, 95 % CI = [−3.440, −1.922]). And the difference of Zn levels according to MI in Asia (SMD = −2.555, 95 % CI = [−3.267, −1.844]) was greater to that among the population in Europe (SMD = −0.745, 95 % CI = [−1.386, −0.104]), but no difference was found in Oceania (SMD = −0.255, 95 % CI = [−0.600, 0.089]). In conclusion, this meta-analysis indicates that there is a significant association between Zn deficiency and MI. We suggest that a community-based, long-term observation in a cohort design should be performed to obtain better understanding of causal relationships between Zn and MI, through measuring hair Zn at baseline to investigate whether the highest zinc category versus lowest was associated with MI risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Stocker R, Keaney JF Jr (2005) New insights on oxidative stress in the artery wall. J Thromb Haemost 3:1825–1834

    Article  CAS  PubMed  Google Scholar 

  3. Kutil B, Ostadal P, Vejvoda J, Kukacka J, Cepova J et al (2010) Alterations in serum selenium levels and their relation to troponin I in acute myocardial infarction. Mol Cell Biochem 345:23–27

    Article  CAS  PubMed  Google Scholar 

  4. Altekin E, Coker C, Sisman AR, Onvural B, Kuralay F et al (2005) The relationship between trace elements and cardiac markers in acute coronary syndromes. J Trace Elem Med Biol 18:235–242

    Article  CAS  PubMed  Google Scholar 

  5. Gomez E, del Diego C, Orden I, Elosegui LM, Borque L et al (2000) Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction. J Trace Elem Med Biol 14:65–70

    Article  CAS  PubMed  Google Scholar 

  6. He W, James Kang Y (2013) Ischemia-induced copper loss and suppression of angiogenesis in the pathogenesis of myocardial infarction. Cardiovasc Toxicol 13:1–8

    Article  PubMed  Google Scholar 

  7. Rubbo H, O’Donnell V (2005) Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: mechanistic insights. Toxicology 208:305–317

    Article  CAS  PubMed  Google Scholar 

  8. Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25:57–74

    Article  CAS  PubMed  Google Scholar 

  9. Aruoma OI, Grootveld M, Bahorun T (2006) Free radicals in biology and medicine: from inflammation to biotechnology. Biofactors 27:1–3

    Article  CAS  PubMed  Google Scholar 

  10. Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17:308–314

    Article  PubMed  Google Scholar 

  11. Versieck J, Barbier F, Speecke A, Hoste J (1975) Influence of myocardial infarction on serum manganese, copper, and zinc concentrations. Clin Chem 21:578–581

    CAS  PubMed  Google Scholar 

  12. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB et al (2008) Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin Chim Acta 389:114–119

    Article  CAS  PubMed  Google Scholar 

  13. Wen Z, Wu S, Liu H, Xu J, Shen X et al (2000) Chinese Journal of Criticalcare Medcine. Chin J Crit Care Med 20:75–76

    Google Scholar 

  14. Jain VK, Mohan G (1991) Serum zinc and copper in myocardial infarction with particular reference to prognosis. Biol Trace Elem Res 31:317–322

    Article  CAS  PubMed  Google Scholar 

  15. Bakos SN, Ahmed HK, Nasser TA (1988) Serum copper, magnesium, zinc, calcium, and potassium changes following acute myocardial infarction. Angiology 39:413–416

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Moreno JM, Gorgojo L, Riemersma RA, Gomez-Aracena J, Kark JD et al (2003) Myocardial infarction risk in relation to zinc concentration in toenails. Br J Nutr 89:673–678

    Article  CAS  PubMed  Google Scholar 

  17. Martin-Lagos F, Navarro-Alarcon M, Terres-Martos C, Lopez GSH, Lopez-Martinez MC (1997) Serum copper and zinc concentrations in serum from patients with cancer and cardiovascular disease. Sci Total Environ 204:27–35

    Article  PubMed  Google Scholar 

  18. Taneja SK, Girhotra S, Singh KP (2000) Detection of potentially myocardial infarction susceptible individuals in Indian population: a mathematical model based on copper and zinc status. Biol Trace Elem Res 75:177–186

    Article  CAS  PubMed  Google Scholar 

  19. Khan SN, Rahman MA, Samad A (1984) Trace elements in serum from Pakistani patients with acute and chronic ischemic heart disease and hypertension. Clin Chem 30:644–648

    CAS  PubMed  Google Scholar 

  20. Zumkley H, Vetter H, Bertram HP, Tank B, Wirth W (1980) Plasma zinc and magnesium alterations in acute myocardial infarction. Klin Wochenschr 58:1143–1146

    Article  CAS  PubMed  Google Scholar 

  21. Low WI, Ikram H (1976) Plasma zinc in acute myocardial infarction. Diagnostic and prognostic implications. Br Heart J 38:1339–1342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Handjani AM, Smith JC Jr, Herrmann JB, Halsted JA (1974) Serum zinc concentration in acute myocardial infarction. Chest 65:185–187

    Article  CAS  PubMed  Google Scholar 

  23. Lekakis J, Kalofoutis A (1980) Zinc concentrations in serum as related to myocardial infarction. Clin Chem 26:1660–1661

    CAS  PubMed  Google Scholar 

  24. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8:281–291

    Article  CAS  PubMed  Google Scholar 

  25. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    CAS  PubMed  Google Scholar 

  26. Ruz M, Cavan KR, Bettger WJ, Fischer PW, Gibson RS (1992) Indices of iron and copper status during experimentally induced, marginal zinc deficiency in humans. Biol Trace Elem Res 34:197–212

    Article  CAS  PubMed  Google Scholar 

  27. Hennig B, Meerarani P, Toborek M, McClain CJ (1999) Antioxidant-like properties of zinc in activated endothelial cells. J Am Coll Nutr 18:152–158

    Article  CAS  PubMed  Google Scholar 

  28. Al-Rasheed NM, Attia HA, Mohamed RA, Al-Rasheed NM, Al-Amin MA (2013) Preventive effects of selenium yeast, chromium picolinate, zinc sulfate and their combination on oxidative stress, inflammation, impaired angiogenesis and atherogenesis in myocardial infarction in rats. J Pharm Pharm Sci 16:848–867

    PubMed  Google Scholar 

  29. Wood RJ (2000) Assessment of marginal zinc status in humans. J Nutr 130:1350S–1354S

    CAS  PubMed  Google Scholar 

  30. Tang YR, Zhang SQ, Xiong Y, Zhao Y, Fu H et al (2003) Studies of five microelement contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol Trace Elem Res 92:97–104

    Article  CAS  PubMed  Google Scholar 

  31. Eltayeb MA, Van Grieken RE (1990) Iron, copper, zinc and lead in hair from Sudanese populations of different age groups. Sci Total Environ 95:157–165

    Article  CAS  PubMed  Google Scholar 

  32. Wastney ME, Ahmed S, Henkin RI (1992) Changes in regulation of human zinc metabolism with age. Am J Physiol 263:R1162–R1168

    CAS  PubMed  Google Scholar 

  33. Tomat AL, Costa Mde L, Arranz CT (2011) Zinc restriction during different periods of life: influence in renal and cardiovascular diseases. Nutrition 27:392–398

    Article  CAS  PubMed  Google Scholar 

  34. Jenkins KJ, Kramer JK (1989) Influence of excess dietary copper on lipid composition of calf tissues. J Dairy Sci 72:2582–2591

    Article  CAS  PubMed  Google Scholar 

  35. Milne DB, Davis CD, Nielsen FH (2001) Low dietary zinc alters indices of copper function and status in postmenopausal women. Nutrition 17:701–708

    Article  CAS  PubMed  Google Scholar 

  36. Hughes S, Samman S (2006) The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr 25:285–291

    Article  CAS  PubMed  Google Scholar 

  37. Dimitrova AA, Strashimirov DS, Russeva AL, Andreeva-Gateva PA, Lakova ET et al (2005) Effect of zinc on the activity of Cu/Zn superoxide dismutase and lipid profile in Wistar rats. Folia Med (Plovdiv) 47:42–46

    Google Scholar 

  38. Morimoto A, Murakami N, Nakamori T, Sakata Y, Watanabe T (1989) Brain regions involved in the development of acute phase responses accompanying fever in rabbits. J Physiol 416:645–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bass DA, Hickock D, Quig D, Urek K (2001) Trace element analysis in hair: factors determining accuracy, precision, and reliability. Alternat Med Rev 6:472–481

    CAS  Google Scholar 

  40. Park SB, Choi SW, Nam AY (2009) Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res 130:218–228

    Article  CAS  PubMed  Google Scholar 

  41. Tan C, Chen H, Xia C (2009) The prediction of cardiovascular disease based on trace element contents in hair and a classifier of boosting decision stumps. Biol Trace Elem Res 129:9–19

    Article  CAS  PubMed  Google Scholar 

  42. Berschneider F, Schwenke I (1969) Mineral and trace element determination in porcine hair as diagnostic procedure for nutrition disorders with these elements. Arch Exp Veterinarmed 23:247–251

    CAS  PubMed  Google Scholar 

  43. Seidel S, Kreutzer R, Smith D, McNeel S, Gilliss D (2001) Assessment of commercial laboratories performing hair mineral analysis. JAMA 285:67–72

    Article  CAS  PubMed  Google Scholar 

  44. Miekeley N, Dias Carneiro MT, da Silveira CL (1998) How reliable are human hair reference intervals for trace elements? Sci Total Environ 218:9–17

    Article  CAS  PubMed  Google Scholar 

  45. Druyan ME, Bass D, Puchyr R, Urek K, Quig D et al (1998) Determination of reference ranges for elements in human scalp hair. Biol Trace Elem Res 62:183–197

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qing Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Cai, ZQ. & Zhou, YM. Deficient Zinc Levels and Myocardial Infarction. Biol Trace Elem Res 165, 41–50 (2015). https://doi.org/10.1007/s12011-015-0244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0244-4

Keywords

Navigation