Is the Pharmacological Mode of Action of Chromium(III) as a Second Messenger?

Abstract

Although recent studies have shown that chromium (as the trivalent ion) is not an essential trace element, it has been demonstrated to generate beneficial effects at pharmacologically relevant doses on insulin sensitivity and cholesterol levels of rodent models of insulin insensitivity, including models of type 2 diabetes. The mode of action of Cr(III) at a molecular level is still an area of active debate; however, the movement of Cr(III) in the body, particularly in response to changes in insulin concentration, suggests that Cr(III) could act as a second messenger, amplifying insulin signaling. The evidence for the pharmacological mechanism of Cr(III)’s ability to increase insulin sensitivity by acting as a second messenger is reviewed, and proposals for testing this hypothesis are described.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Vincent JB (2013) The bioinorganic chemistry of chromium. Wiley, Chichester

    Google Scholar 

  2. 2.

    EFSA Panel on Dietetic Products, Nutrition, and Allergies (2014) Scientific opinion on dietary reference values for chromium. EFSA J 12:3845

    Google Scholar 

  3. 3.

    Vincent JB (2014) Is chromium pharmacologically relevant? J Trace Elem Med Biol 28:397–405

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Colomer J, Means AR (2007) Physiological roles of Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 45:169–214

    CAS  PubMed  Google Scholar 

  5. 5.

    Aisen P, Aasa R, Redfield AG (1969) The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244:4628–4633

    CAS  PubMed  Google Scholar 

  6. 6.

    Tan AT, Woodworth RC (1969) Ultraviolet difference spectral studies of conalbumin complexes with transition metal ions. Biochemistry 8:3711–3716

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Harris DC (1977) Different metal-binding properties of the two sites of human transferrin. Biochemistry 16:560–564

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Ainscough EW, Brodie AM, Plowman JE, Bloor SJ, Sanders Loehr J, Loehr TM (1980) Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy. Biochemistry 19:4072–4079

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Ainscough EW, Brodie AM, Plowman JE (1979) The chromium, manganese, cobalt, and copper complexes of human lactoferrin. Inorg Chim Acta 33:149–153

    CAS  Article  Google Scholar 

  10. 10.

    Moshtaghie AA, Ani M, Bazrafshan MR (1992) Comparative binding study of aluminum and chromium to human transferrin: effect of iron. Biol Trace Elem Res 32:39–46

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ani M, Moshtaghie AA (1992) The effect of chromium on parameters related to iron metabolism. Biol Trace Elem Res 32:57–64

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Ge D, Wu K, Cruce AA, Bowman MK, Vincent JB (2015) Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant. J Inorg Biochem, in press

  13. 13.

    Sun Y, Ramirez J, Woski SA, Vincent JB (2000) The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and Cr(pic)3 to LMWCr. J Biol Inorg Chem 5:129–136

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Vincent JB, Love S (2012) The binding and transport of alterative metals by transferrin. Biochim Biophys Acta 1820:362–378

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Brock JH (1985) Transferrins. In: Harrison PM (ed) Metalloproteins, 2nd edn. Macmillan, London, pp 183–262

  16. 16.

    Clodfelder BJ, Vincent JB (2005) The time-dependent transport of chromium in adult rats from the bloodstream to the urine. J Biol Inorg Chem 10:383–393

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Clodfelder BJ, Upchurch RG, Vincent JB (2004) A comparison of the insulin-sensitive transport of chromium in healthy and model diabetic rats. J Inorg Biochem 98:522–533

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Hopkins LL Jr, Schwarz K (1964) Chromium(III) binding to serum proteins, specifically siderophilin. Biochim Biophys Acta 90:484–491

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Kornfeld S (1969) The effect of metal attachment to human transferrin on its binding to reticulocytes. Biochim Biophys Acta 194:25–33

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kandror KV (1999) Insulin regulation of protein traffic in rat adipose cells. J Biol Chem 274:25210–25217

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Sayato Y, Nakamuro K, Matsui S, Ando M (1980) Metabolic fate of chromium compounds. I. Comparative behavior of chromium in rat administered with Na2 51CrO4 and 51CrCl3. J Pharm Dyn 3:17–23

    CAS  Article  Google Scholar 

  22. 22.

    Vincent J (2000) The biochemistry of chromium. J Nutr 130:715–718

    CAS  PubMed  Google Scholar 

  23. 23.

    Morris BW, MacNeil S, Stanley K, Gray TA, Fraser R (1993) The inter-relationship between insulin and chromium in hyperinsulinaemic euglycaemic clamps in healthy volunteers. J Endocrinol 139:339–345

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Anderson RA, Polansky MM, Bryden NA, Roginski EE, Patterson KY, Veillon C, Glinsmann W (1982) Urinary chromium excretion of human subjects: effects of chromium supplementation and glucose loading. Am J Clin Nutr 36:1184–1193

    CAS  PubMed  Google Scholar 

  25. 25.

    Anderson RA, Polansky MM, Bryden NA, Roginski EE, Patterson KY, Reamer DC (1982) Effect of exercise (running) on serum glucose, insulin, glucagons, and chromium excretion. Diabetes 31:212–216

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Kozlovsky AS, Moser PB, Reisner S, Anderson RA (1986) Effects of diets high in simple sugars on urinary chromium losses. Metabolism 35:515–518

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Anderson RA, Bryden NA, Polansky MM, Reiser S (1990) Urinary chromium excretion and insulinogenic properties of carbohydrates. Am J Clin Nutr 51:864–868

    CAS  PubMed  Google Scholar 

  28. 28.

    Morris BM, Blumsohn A, MacNeil S, Gray TA (1992) The trace element chromium—a role in glucose homeostasis. Am J Clin Nutr 55:989–991

    CAS  PubMed  Google Scholar 

  29. 29.

    Morris BM, Griffiths H, Kemp GJ (1988) Effect of glucose loading on concentrations of chromium in plasma and urine of healthy adults. Clin Chem 34:1114–1116

    CAS  PubMed  Google Scholar 

  30. 30.

    Vincent JB (2010) Chromium: celebrating 50 years as an essential element? Dalton Trans 39:3787–3794

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Vincent JB (2000) Elucidating a biological role for chromium at a molecular level. Acc Chem Res 33:503–510

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Davis CM, Vincent JB (1997) Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36:4382–4385

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Davis CM, Royer AC, Vincent JB (1997) Synthetic multinuclear chromium assembly activates insulin receptor tyrosine kinase activity: functional model for low-molecular-weight chromium-binding substance. Inorg Chem 36:5316–5320

    CAS  Article  Google Scholar 

  34. 34.

    Davis CM, Sumrall KH, Vincent JB (1996) The biologically active form of chromium may activate a membrane phosphotyrosine phopshatase (PTP). Biochemistry 35:12963–12969

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Goldstein BJ, Zhu L, Hager R, Zilbering A, Sun Y, Vincent JB (2001) Enhancement of post-receptor insulin signaling by trivalent chromium in hepatoma cells is associated with differential inhibition of specific protein-tyrosine phosphatases. J Trace Elem Exp Med 14:393–404

    CAS  Article  Google Scholar 

  36. 36.

    Chen Y, Watson HM, Gao J, Halder Sinha S, Cassady CJ, Vincent JB (2011) Characterizing the organic component of low-molecular-weight chromium-binding substance and its binding of chromium. J Nutr 141:1225–1232

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Yamamoto A, Wada O, Suzuki H (1988) Purification and properties of biologically active chromium complex from bovine colostrum. J Nutr 118:39–45

    CAS  PubMed  Google Scholar 

  38. 38.

    Yamamoto A, Wada O, Manabe S (1989) Evidence that chromium is an essential factor for biological activity of low-molecular-weight Cr-binding substance. Biochem Biophys Res Commun 163:189–193

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Panzhinskiy E, Ren J, Vincent JB, Sreejayan N (2012) A novel endogenous chromium binding peptide augments glucose uptake and insulin signaling in myotubes. Diabetes 61(1):A412

    Google Scholar 

  40. 40.

    Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elmendorf JS (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 20:857–870

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS (2008) Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance. Mol Endocrinol 22:937–950

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John B. Vincent.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vincent, J.B. Is the Pharmacological Mode of Action of Chromium(III) as a Second Messenger?. Biol Trace Elem Res 166, 7–12 (2015). https://doi.org/10.1007/s12011-015-0231-9

Download citation

Keywords

  • Chromium
  • Second messenger
  • Transferrin
  • Insulin
  • Low-molecular-weight chromium-binding substance