Skip to main content
Log in

Effects of Static Magnetic Field Exposure on Plasma Element Levels in Rat

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. SMF influenced cellular antioxidant defense mechanisms by affecting antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). However, there were insufficient reports about the effects of SMF on macro and trace elements in serum, and the results were contradictory until now. In the current study, 12 rats were divided into two groups, namely as control and exposure group (128 mT and 1 h/day during five consecutive days). The macro and trace element concentrations in serum were examined. No significant difference was observed in the sodium (Na), potassium (K), calcium (Ca), phosphorus (P), and selenium (Se) levels in rat compared to control. By contrast, exposure to SMF showed an increase in the zinc (Zn) level and a decrease in iron (Fe) concentration. Under our experimental conditions, SMF exposure cannot affect the plasma levels of macroelements, while it can disrupt Zn and Fe concentrations in rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hong FT (1995) Magnetic field effects on biomolecules, cells, and living organisms. Biosystems 36:187–229

    Article  CAS  PubMed  Google Scholar 

  2. Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173

    Article  CAS  PubMed  Google Scholar 

  3. Wartenberg D (2001) Residential EMF exposure and childhood leukemia: meta-analysis and population attributable risk. Biolectromagnetics 5:86–104

    Article  Google Scholar 

  4. Kheifets LI (2001) Electric and magnetic field exposure and brain cancer: a review. Biolectromagnetics 5:S120–S131

    Article  Google Scholar 

  5. Karasek M, Lerchl A (2002) Melatonin and magnetic fields. Neuro Endocrinol Lett 23:84–87

    CAS  PubMed  Google Scholar 

  6. Ishisaka R, Kanno T, Inai Y, Nakahara H et al (2000) Effects of a magnetic fields on the various functions of subcellular organelles and cells. Pathophysiol 7:149–152

    Article  Google Scholar 

  7. Fiorani M, Cantoni O, Sestili P et al (1992) Electric and/or magnetic field effects on DNA structure and function in cultured human cells. Mutat Res 282:25–29

    Article  CAS  PubMed  Google Scholar 

  8. Lyle DB, Fuchs TA, Casamento JP, Davis CC, Swicord ML (1997) Intracellular calcium signaling by Jurkat T-lymphocytes exposed to 60 Hz magnetic field. Bioelectromagnetics 18:439–445

    Article  CAS  PubMed  Google Scholar 

  9. Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23:783–792

    Article  CAS  PubMed  Google Scholar 

  10. Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci 96(4):465–473

    Article  CAS  PubMed  Google Scholar 

  11. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  12. Hajnóczky G, Csordás G, Das S et al (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kowaltowski AJ, Castilho RF, Vercesi AE (1996) Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 378:150–152

    Article  CAS  PubMed  Google Scholar 

  14. Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164

    Article  CAS  PubMed  Google Scholar 

  15. D’Andrea JA, Chou CK, Johnston SA, Adair ER (2003) Microwave effects on the nervous system. Bioelectromagnetics 6:S107–S147

    Article  PubMed  Google Scholar 

  16. Hossmann KA, Hermann DM (2003) Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24:49–62

    Article  CAS  PubMed  Google Scholar 

  17. Nittby H, Grafström G, Eberhardt JL et al (2008) Radiofrequency and extremely low frequency electromagnetic field effects on the blood brain barrier. Electromagn Biol Med 27:103–126

    Article  PubMed  Google Scholar 

  18. Oscar KJ, Hawkins TD (1977) Microwave alteration of the blood-brain barrier systems of rats. Brain Res 126:281–293

    Article  CAS  PubMed  Google Scholar 

  19. Castelnau PA, Garrett RS, Palinski W, Witztum JL, Campbell IL, Powell HC (1998) Abnormal iron deposition associated with lipid peroxidation in trans-genic mice expressing interleukin-6 in the brain. J Neuropathol Exp Neurol 52:153–162

    Google Scholar 

  20. Zheng W, Aschner M, Ghersi-Agea J-F (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. De Lima MN, Polydoro M, Laranja DC et al (2005) Recognition memory impairment and oxidative stress induced by postnatal iron administration. Eur J Neurosci 21:2521–2528

    Article  PubMed  Google Scholar 

  22. Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2000) Maze learning and motor activity in adult mice induced by iron exposure during a critical postnatal period. Brain Res Dev Brain Res 119:65–74

    Article  CAS  PubMed  Google Scholar 

  23. Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 3:142–148

    Article  Google Scholar 

  24. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  25. Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93:177–209

    Article  CAS  PubMed  Google Scholar 

  26. Wielopolski L, Ramirez LM, Gallagher D et al (2006) Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol 101:945–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Naziroglu M, Celik O, Ozgul C et al (2012) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105(3):683–692

    Article  CAS  PubMed  Google Scholar 

  28. Ozorak A, Naziroglu M, Celik O et al (2013) Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res 156(1–3):221–229

    Article  CAS  PubMed  Google Scholar 

  29. Miryam E, Aida L, Samira M, Mohsen S, Hafedh A (2010) Effects of acute exposure to static magnetic field on ionic composition of rat spinal cord. Gen Physiol Biophys 29:288–294

    Article  PubMed  Google Scholar 

  30. Brown CJ, Cheneryb SRN, Smith B et al (2004) Environmental influences on the trace element content of teeth implications for disease and nutritional status. Arch Oral Biol 49:705–717

    Article  CAS  PubMed  Google Scholar 

  31. Burchard JF, Nguyen DH, Block E (1999) Macro- and trace element concentrations in blood plasma and cerebrospinal fluid of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 20:358–364

    Article  CAS  PubMed  Google Scholar 

  32. Akdag MZ, Dasdag S, Aksen F, Isik B, Yilmaz F (2006) Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53, and trace elements. Med Sci Monit 12(11):BR366–BR371

    PubMed  Google Scholar 

  33. Kangchu L, Shirong M, Dongqing R, Yurong L, Guirong D, Junye L, Yao G, Guozhen G (2014) Effect of electromagnetic pulse on serum element levels in rat. Biol Trace Elem Res DOI. doi:10.1007/s12011-014-9903-0

    Google Scholar 

  34. Ghodbane S, Amara S, Garrel C et al (2011) Selenium supplementation ameliorates static magnetic field-induced disorders in antioxidant status in rat tissues. Environ Toxicol Pharmacol 31:100–106

    Article  CAS  PubMed  Google Scholar 

  35. Amara S, Douki T, Ravanat JL et al (2007) Influence of a static magnetic field (250mT) on the antioxidant response and DNA integrity in THP1 cells. Phys Med Biol 52:889–898

    Article  CAS  PubMed  Google Scholar 

  36. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  37. Nazıroğlu M, Yürekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurosci 33:589–599

    Article  Google Scholar 

  38. Liburdy RP (1992) Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett 301:53–59

    Article  CAS  PubMed  Google Scholar 

  39. Morandi MA, Pak CM, Caren RP, Caren LD (1996) Lack of an EMF-induced genotoxic effect in the Ames assay. Life Sci 59:263–271

    Article  CAS  PubMed  Google Scholar 

  40. Gerasimova GK, Nakhilnitskaia ZN (1997) Electrolyte content in the blood of animals and potassium ion transport in the erythrocytes under the action of a constant magnetic field. Kosm Biol Aviakosm Med 11:63–67

    Google Scholar 

  41. Lahbib A, Lecomte F, Ghodbane S, Hubert P, Sakly M, Abdelmelek H (2013) Static magnetic field induced Hypovitaminosis D in rat. J Vet Med Sci 75:1181–1185

    Article  Google Scholar 

  42. Touitou Y, Djeridane Y, Lambrozo J et al (2012) Long-term (up to 20 years) effects of 50-Hz magnetic field exposure on blood chemistry parameters in healthy men. Clin Biochem 45:425–428

    Article  CAS  PubMed  Google Scholar 

  43. Ghodbane S, Amara S, Arnaud J et al (2011) Effect of selenium pre-treatment on plasma antioxidant vitamins A (retinol) and e(\( \alpha \)-tocopherol) in static magnetic field-exposed rats. Toxicol Ind Health 27(949–955):2011

    Google Scholar 

  44. Gorczynska E, Wegrzynowicz R (1986) Effect of chronic exposure to static magnetic field upon the K+, Na + and chlorides concentrations in the serum of guinea pigs. J Hyg Epidemiol Microbiol Immunol 30:121–126

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Laboratory of Integrety Physiology, Bizerta, Tunisia.

We express our gratitude toward Laboratory of clinical biochemistry Liège, Belgium staff and we thank laboratory of Analytical Chemistry, Liège, Belgium staff for their contribution to this study.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahbib Aida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida, L., Soumaya, G., Myriam, E. et al. Effects of Static Magnetic Field Exposure on Plasma Element Levels in Rat. Biol Trace Elem Res 160, 67–72 (2014). https://doi.org/10.1007/s12011-014-9987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9987-6

Keywords

Navigation