Biological Trace Element Research

, Volume 160, Issue 1, pp 67–72 | Cite as

Effects of Static Magnetic Field Exposure on Plasma Element Levels in Rat

  • Lahbib Aida
  • Ghodbane Soumaya
  • Elferchichi Myriam
  • Sakly Mohsen
  • Abdelmelek Hafedh


The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. SMF influenced cellular antioxidant defense mechanisms by affecting antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). However, there were insufficient reports about the effects of SMF on macro and trace elements in serum, and the results were contradictory until now. In the current study, 12 rats were divided into two groups, namely as control and exposure group (128 mT and 1 h/day during five consecutive days). The macro and trace element concentrations in serum were examined. No significant difference was observed in the sodium (Na), potassium (K), calcium (Ca), phosphorus (P), and selenium (Se) levels in rat compared to control. By contrast, exposure to SMF showed an increase in the zinc (Zn) level and a decrease in iron (Fe) concentration. Under our experimental conditions, SMF exposure cannot affect the plasma levels of macroelements, while it can disrupt Zn and Fe concentrations in rat.


Macroelements Microelements Static magnetic field Rat 



This study was supported by the Laboratory of Integrety Physiology, Bizerta, Tunisia.

We express our gratitude toward Laboratory of clinical biochemistry Liège, Belgium staff and we thank laboratory of Analytical Chemistry, Liège, Belgium staff for their contribution to this study.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Hong FT (1995) Magnetic field effects on biomolecules, cells, and living organisms. Biosystems 36:187–229PubMedCrossRefGoogle Scholar
  2. 2.
    Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173PubMedCrossRefGoogle Scholar
  3. 3.
    Wartenberg D (2001) Residential EMF exposure and childhood leukemia: meta-analysis and population attributable risk. Biolectromagnetics 5:86–104CrossRefGoogle Scholar
  4. 4.
    Kheifets LI (2001) Electric and magnetic field exposure and brain cancer: a review. Biolectromagnetics 5:S120–S131CrossRefGoogle Scholar
  5. 5.
    Karasek M, Lerchl A (2002) Melatonin and magnetic fields. Neuro Endocrinol Lett 23:84–87PubMedGoogle Scholar
  6. 6.
    Ishisaka R, Kanno T, Inai Y, Nakahara H et al (2000) Effects of a magnetic fields on the various functions of subcellular organelles and cells. Pathophysiol 7:149–152CrossRefGoogle Scholar
  7. 7.
    Fiorani M, Cantoni O, Sestili P et al (1992) Electric and/or magnetic field effects on DNA structure and function in cultured human cells. Mutat Res 282:25–29PubMedCrossRefGoogle Scholar
  8. 8.
    Lyle DB, Fuchs TA, Casamento JP, Davis CC, Swicord ML (1997) Intracellular calcium signaling by Jurkat T-lymphocytes exposed to 60 Hz magnetic field. Bioelectromagnetics 18:439–445PubMedCrossRefGoogle Scholar
  9. 9.
    Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23:783–792PubMedCrossRefGoogle Scholar
  10. 10.
    Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci 96(4):465–473PubMedCrossRefGoogle Scholar
  11. 11.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658PubMedCrossRefGoogle Scholar
  12. 12.
    Hajnóczky G, Csordás G, Das S et al (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kowaltowski AJ, Castilho RF, Vercesi AE (1996) Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 378:150–152PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164PubMedCrossRefGoogle Scholar
  15. 15.
    D’Andrea JA, Chou CK, Johnston SA, Adair ER (2003) Microwave effects on the nervous system. Bioelectromagnetics 6:S107–S147PubMedCrossRefGoogle Scholar
  16. 16.
    Hossmann KA, Hermann DM (2003) Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24:49–62PubMedCrossRefGoogle Scholar
  17. 17.
    Nittby H, Grafström G, Eberhardt JL et al (2008) Radiofrequency and extremely low frequency electromagnetic field effects on the blood brain barrier. Electromagn Biol Med 27:103–126PubMedCrossRefGoogle Scholar
  18. 18.
    Oscar KJ, Hawkins TD (1977) Microwave alteration of the blood-brain barrier systems of rats. Brain Res 126:281–293PubMedCrossRefGoogle Scholar
  19. 19.
    Castelnau PA, Garrett RS, Palinski W, Witztum JL, Campbell IL, Powell HC (1998) Abnormal iron deposition associated with lipid peroxidation in trans-genic mice expressing interleukin-6 in the brain. J Neuropathol Exp Neurol 52:153–162Google Scholar
  20. 20.
    Zheng W, Aschner M, Ghersi-Agea J-F (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192:1–11PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    De Lima MN, Polydoro M, Laranja DC et al (2005) Recognition memory impairment and oxidative stress induced by postnatal iron administration. Eur J Neurosci 21:2521–2528PubMedCrossRefGoogle Scholar
  22. 22.
    Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2000) Maze learning and motor activity in adult mice induced by iron exposure during a critical postnatal period. Brain Res Dev Brain Res 119:65–74PubMedCrossRefGoogle Scholar
  23. 23.
    Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 3:142–148CrossRefGoogle Scholar
  24. 24.
    Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873PubMedCrossRefGoogle Scholar
  25. 25.
    Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93:177–209PubMedCrossRefGoogle Scholar
  26. 26.
    Wielopolski L, Ramirez LM, Gallagher D et al (2006) Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol 101:945–949PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Naziroglu M, Celik O, Ozgul C et al (2012) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105(3):683–692PubMedCrossRefGoogle Scholar
  28. 28.
    Ozorak A, Naziroglu M, Celik O et al (2013) Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res 156(1–3):221–229PubMedCrossRefGoogle Scholar
  29. 29.
    Miryam E, Aida L, Samira M, Mohsen S, Hafedh A (2010) Effects of acute exposure to static magnetic field on ionic composition of rat spinal cord. Gen Physiol Biophys 29:288–294PubMedCrossRefGoogle Scholar
  30. 30.
    Brown CJ, Cheneryb SRN, Smith B et al (2004) Environmental influences on the trace element content of teeth implications for disease and nutritional status. Arch Oral Biol 49:705–717PubMedCrossRefGoogle Scholar
  31. 31.
    Burchard JF, Nguyen DH, Block E (1999) Macro- and trace element concentrations in blood plasma and cerebrospinal fluid of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 20:358–364PubMedCrossRefGoogle Scholar
  32. 32.
    Akdag MZ, Dasdag S, Aksen F, Isik B, Yilmaz F (2006) Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53, and trace elements. Med Sci Monit 12(11):BR366–BR371PubMedGoogle Scholar
  33. 33.
    Kangchu L, Shirong M, Dongqing R, Yurong L, Guirong D, Junye L, Yao G, Guozhen G (2014) Effect of electromagnetic pulse on serum element levels in rat. Biol Trace Elem Res DOI. doi: 10.1007/s12011-014-9903-0 Google Scholar
  34. 34.
    Ghodbane S, Amara S, Garrel C et al (2011) Selenium supplementation ameliorates static magnetic field-induced disorders in antioxidant status in rat tissues. Environ Toxicol Pharmacol 31:100–106PubMedCrossRefGoogle Scholar
  35. 35.
    Amara S, Douki T, Ravanat JL et al (2007) Influence of a static magnetic field (250mT) on the antioxidant response and DNA integrity in THP1 cells. Phys Med Biol 52:889–898PubMedCrossRefGoogle Scholar
  36. 36.
    Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001PubMedCrossRefGoogle Scholar
  37. 37.
    Nazıroğlu M, Yürekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurosci 33:589–599CrossRefGoogle Scholar
  38. 38.
    Liburdy RP (1992) Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett 301:53–59PubMedCrossRefGoogle Scholar
  39. 39.
    Morandi MA, Pak CM, Caren RP, Caren LD (1996) Lack of an EMF-induced genotoxic effect in the Ames assay. Life Sci 59:263–271PubMedCrossRefGoogle Scholar
  40. 40.
    Gerasimova GK, Nakhilnitskaia ZN (1997) Electrolyte content in the blood of animals and potassium ion transport in the erythrocytes under the action of a constant magnetic field. Kosm Biol Aviakosm Med 11:63–67Google Scholar
  41. 41.
    Lahbib A, Lecomte F, Ghodbane S, Hubert P, Sakly M, Abdelmelek H (2013) Static magnetic field induced Hypovitaminosis D in rat. J Vet Med Sci 75:1181–1185CrossRefGoogle Scholar
  42. 42.
    Touitou Y, Djeridane Y, Lambrozo J et al (2012) Long-term (up to 20 years) effects of 50-Hz magnetic field exposure on blood chemistry parameters in healthy men. Clin Biochem 45:425–428PubMedCrossRefGoogle Scholar
  43. 43.
    Ghodbane S, Amara S, Arnaud J et al (2011) Effect of selenium pre-treatment on plasma antioxidant vitamins A (retinol) and e(\( \alpha \)-tocopherol) in static magnetic field-exposed rats. Toxicol Ind Health 27(949–955):2011Google Scholar
  44. 44.
    Gorczynska E, Wegrzynowicz R (1986) Effect of chronic exposure to static magnetic field upon the K+, Na + and chlorides concentrations in the serum of guinea pigs. J Hyg Epidemiol Microbiol Immunol 30:121–126PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lahbib Aida
    • 1
  • Ghodbane Soumaya
    • 1
  • Elferchichi Myriam
    • 1
  • Sakly Mohsen
    • 1
  • Abdelmelek Hafedh
    • 1
  1. 1.Laboratory of Integrative Physiology, Faculty of Sciences of BizerteCarthage UniversityJarzounaTunisia

Personalised recommendations