Skip to main content
Log in

Preventive Effects of Dextromethorphan on Methylmercury-Induced Glutamate Dyshomeostasis and Oxidative Damage in Rat Cerebral Cortex

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is a well-known environmental pollutant leading to neurotoxicant associated with aberrant central nervous system (CNS) functions, but its toxic mechanisms have not yet been fully recognized. In the present study, we tested the hypothesis that MeHg induces neuronal injury via glutamate (Glu) dyshomeostasis and oxidative damage mechanisms and that these effects are attenuated by dextromethorphan (DM), a low-affinity and noncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist. Seventy-two rats were randomly divided into four groups of 18 animals in each group: control group, MeHg-treated group (4 and 12 μmol/kg), and DM-pretreated group. After the 4-week treatment, we observed that the administration of MeHg at a dose of 12 μmol/kg significantly increased in total mercury (Hg) levels, disrupted Glu metabolism, overexcited NMDARs, and led to intracellular calcium overload in the cerebral cortex. We also found that MeHg reduced nonenzymatic and enzymatic antioxidants, enhanced neurocyte apoptosis, induced reactive oxygen species (ROS), and caused lipid, protein, and DNA peroxidative damage in the cerebral cortex. Moreover, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) appeared to be inhibited by MeHg exposure. These alterations were significantly prevented by the pretreatment with DM at a dose of 13.5 μmol/kg. In conclusion, these findings strongly implicate that DM has potential to protect the brain from Glu dyshomeostasis and oxidative damage resulting from MeHg-induced neurotoxicity in rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  PubMed  Google Scholar 

  2. Aschner M, Syversen T, Souza DO et al (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    Article  CAS  PubMed  Google Scholar 

  3. Sirois JE, Atchison WD (2000) Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells. Toxicol Appl Pharmacol 167:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Atchison WD (2005) Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Pharmacol Sci 26:549–557

    Article  CAS  Google Scholar 

  5. Aschner M, Yao CP, Allen JW et al (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem Int 37:199–206

    Article  CAS  PubMed  Google Scholar 

  6. Farina M, Dahm KC, Schwalm FD et al (2003) Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci 73:135–140

    Article  CAS  PubMed  Google Scholar 

  7. Mutkus L, Aschner JL, Syversen T et al (2005) Methylmercury alters the in vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells. Biol Trace Elem Res 107:231–245

    Article  CAS  PubMed  Google Scholar 

  8. Ou YC, White CC, Krejsa CM et al (1999) The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology 20:793–804

    CAS  PubMed  Google Scholar 

  9. Manfroi CB, Schwalm FD, Cereser V et al (2004) Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system. Toxicol Sci 81:172–178

    Article  CAS  PubMed  Google Scholar 

  10. Yin Z, Milatovic D, Aschner JL et al (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Featherstone DE (2010) Intercellular glutamate signaling in the nervous system and beyond. ACS Chem Neurosci 1:4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Erikson K, Aschner M (2002) Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicity 23:595–602

    Article  CAS  Google Scholar 

  13. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  CAS  PubMed  Google Scholar 

  14. Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277:3622–3636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  CAS  PubMed  Google Scholar 

  16. Ceccatelli S, Dare E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188:301–308

    Article  CAS  PubMed  Google Scholar 

  17. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  PubMed  Google Scholar 

  18. Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58:365–370

    Article  CAS  PubMed  Google Scholar 

  19. Farina M, Aschner M, Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 256:405–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dreiem A, Seegal RF (2007) Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. NeuroToxicology 28:720–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  Google Scholar 

  23. Qiuyin C, Rahn RO, Ruiwen Z (1997) Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett 119:99–107

    Article  Google Scholar 

  24. Franco JL, Braga HC, Stringari J (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20:1919–1926

    Article  CAS  PubMed  Google Scholar 

  25. Lucena GM, Franco JL, Ribas CM et al (2007) Cipura paludosa extract prevents methyl mercury-induced neurotoxicity in mice. Basic Clin Pharmacol Toxicol 101:127–131

    Article  CAS  PubMed  Google Scholar 

  26. Farina M, Campos F, Vendrell I et al (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112:416–426

    Article  CAS  PubMed  Google Scholar 

  27. Farina M, Soares FA, Zeni G et al (2004) Additive pro-oxidative effects of methylmercury and ebselen in liver from suckling rat pups. Toxicol Lett 146:227–235

    Article  CAS  PubMed  Google Scholar 

  28. Chang JY, Tsai PF (2008) Prevention of methylmercury-induced mitochondrial depolarization, glutathione depletion and cell death by 15-deoxy-delta-12, 14-prostaglandin J(2). NeuroToxicology 29:1054–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Roos DH, Puntel RL, Santos MM et al (2009) Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol Vitro 23:302–307

    Article  CAS  Google Scholar 

  30. Allen JW, Mutkus LA, Aschner M (2001) Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 902:92–100

    Article  CAS  PubMed  Google Scholar 

  31. Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–140

    Article  CAS  PubMed  Google Scholar 

  32. Bordji K, Becerril-Ortega J, Buisson A (2011) Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev Neurosci 22:285–294

    Article  CAS  PubMed  Google Scholar 

  33. Papadia S, Soriano FX, Fet L et al (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhang W, Wang T, Qin L et al (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18:589–591

    CAS  PubMed  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  36. Stockwell PB, Corns WT (1993) The role of atomic fluorescence spectrometry in the automatic environmental monitoring of trace element analysis. J Autom Chem 15:79–84

    Article  CAS  Google Scholar 

  37. Curi TC, Melo MP, Azevedo RB et al (1997) Glutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase. Am J Physiol 273:C1124–C1129

    CAS  PubMed  Google Scholar 

  38. Ahamed M, Akhtar MJ, Siddiqui MA et al (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108

    Article  CAS  PubMed  Google Scholar 

  39. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–311

    Article  CAS  PubMed  Google Scholar 

  40. Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81:769–776

    Article  CAS  PubMed  Google Scholar 

  41. Chan E, Yung WH, Baumann KI (1996) Cytoplasmic Ca2+ concentrations in intact Merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 108:357–366

    Article  CAS  PubMed  Google Scholar 

  42. Cheng WW, Lin ZQ, Wei BF et al (2011) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43:564–572

    Article  CAS  PubMed  Google Scholar 

  43. Guerguerian AM, Brambrink AM, Traystman RJ et al (2002) Altered expression and phosphorylation of N-methyl-d-aspartate receptors in piglet striatum after hypoxiaischemia. Brain Res 104:66–80

    Article  CAS  Google Scholar 

  44. Yin Z, Jiang H, Syversen T et al (2008) The methylmercury-l-cysteine conjugate is a substrate for the l-type large neutral amino acid transporter. J Neurochem 107:1083–1090

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  PubMed  Google Scholar 

  46. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  47. Juarez BI, Martınez ML, Montante M et al (2002) Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicol Teratol 24:767–771

    Article  CAS  PubMed  Google Scholar 

  48. Carratu MR, Borracci P, Coluccia A et al (2006) Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring. Neuroscience 141:1619–1629

    Article  CAS  PubMed  Google Scholar 

  49. Boulland JL, Osen KK, Levy LM et al (2002) Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. Eur J Neurosci 15:1615–1631

    Article  PubMed  Google Scholar 

  50. Sidoryk-Wegrzynowicz M, Lee E, Albrecht J et al (2009) Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 110:822–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Rothstein JD, Martin L, Levey AI et al (1996) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  Google Scholar 

  52. Nakamichi N, Ohno H, Kuramoto N et al (2002) Dual mechanisms of Ca2+ increases elicited by N-methyl-d-aspartate in immature and mature cultured cortical neurons. J Neurosci Res 67:275–283

    Article  CAS  PubMed  Google Scholar 

  53. Wu HY, Yuen EY, Lu YF et al (2005) Regulation of N-methyl-d-aspartate receptors by calpain in cortical neurons. J Biol Chem 280:21588–21593

    Article  CAS  PubMed  Google Scholar 

  54. Simpkins KL, Guttmann RP, Dong Y et al (2003) Selective activation induced cleavage of the NR2B subunit by calpain. J Neurosci 23:11322–11331

    CAS  PubMed  Google Scholar 

  55. Wu HY, Hsu FC, Gleichman AJ et al (2007) Fyn-mediated phosphorylation of NR2B Tyr-1336 controls calpain-mediated NR2B cleavage in neurons and heterologous systems. J Biol Chem 82:20075–20087

    Article  Google Scholar 

  56. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Virtual J Nanoscale Sci Technol 13:622–627

    Google Scholar 

  57. Stone V, Donaldson K (2006) Nanotoxicology: signs of stress. Nat Nanotechnol 1:23–24

    Article  CAS  PubMed  Google Scholar 

  58. Shanker G, Syversen T, Aschner JL et al (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Mol Brain Res 137:11–22

    Article  CAS  PubMed  Google Scholar 

  59. Farina M, Franco JL, Ribas CM et al (2005) Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice. J Pharm Pharmacol 57:1503–1508

    Article  CAS  PubMed  Google Scholar 

  60. Carvalho MC, Franco JL, Ghizoni H et al (2007) Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice. Toxicology 239:195–203

    Article  CAS  PubMed  Google Scholar 

  61. Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction? Ann Neurol 32:S10–S15

    Article  CAS  PubMed  Google Scholar 

  62. Niki E, Yoshida Y, Saito Y et al (2005) Lipid peroxidation: mechanism, inhibition, and biological effects. Biochem Biophys Res Commun 336:1–9

    Article  Google Scholar 

  63. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15(5 Pt 1):3318–3327

    CAS  PubMed  Google Scholar 

  64. Sanz-Blasco S, Valero RA, Rodri guez-Crespo I et al (2008) Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS ONE 3:e2718

    Article  PubMed Central  PubMed  Google Scholar 

  65. Swamy M, Salleh MJ, Sirajudeen KN et al (2010) Nitric oxide (no), citrulline - no cycle enzymes, glutamine synthetase and oxidative stress in anoxia (hypobaric hypoxia) and reperfusion in rat brain. Int J Med Sci 7:147–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Carpenter CL, Marks SS, Watson DL et al (1988) Dextromethorphan and dextrorphan as calcium channel antagonists. Brain Res 439:372–375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant no.81172631).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofa Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Xu, Z., Liu, W. et al. Preventive Effects of Dextromethorphan on Methylmercury-Induced Glutamate Dyshomeostasis and Oxidative Damage in Rat Cerebral Cortex. Biol Trace Elem Res 159, 332–345 (2014). https://doi.org/10.1007/s12011-014-9977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9977-8

Keywords

Navigation