Skip to main content
Log in

Assessment of Oxidative Stress in Hippocampus, Cerebellum and Frontal Cortex in Rat Pups Exposed to Lead (Pb) During Specific Periods of Initial Brain Development

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Epidemiological studies in children have proved that lead (Pb) exposure causes deficits in neural and cognitive functions. The present study assessed the oxidative stress on postnatal day 30, in the hippocampus, cerebellum and frontal cortex of rat pups exposed to Pb during specific periods of early brain development. Five groups of rat pups were investigated, and 0.2 % Pb acetate in drinking was the dosage used. (i) Gestation and lactation (GL) group (n = 9) of rat pups was exposed to Pb during gestation and lactation through their mother, (ii) gestation (G) group (n = 9) of rat pups was exposed to Pb during gestation only, (iii) lactation (L) group (n = 9) of rat pups was exposed to Pb during lactation only, (iv) pre-gestation (PG) group (n = 9) of rat pups was born to mothers who were exposed to Pb for 1 month before conception, and (v) normal control (NC) (n = 9) group of rats pups had no exposure to Pb during gestation and lactation period. From the present study, it is evident that Pb exposure during different periods of early brain development (GL, G, L and PG groups) causes oxidative stress and lactation period (postnatal period) of Pb exposure produces maximum oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yiin SJ, Lin TH (1995) Lead-catalyzed peroxidation of essential unsaturated fatty acid. Biol Trace Elem Res 50:167–172

    Article  CAS  PubMed  Google Scholar 

  2. Adegbesan BO, Adenuga GA (2007) Effect of lead exposure on liver lipid peroxidative and antioxidant defense systems of protein-undernourished rats. Biol Trace Elem Res 116:219–225

    Article  CAS  PubMed  Google Scholar 

  3. Bokara KK, Brown E, McCormick R et al (2008) Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. Biometals 21:9–16

    Article  CAS  PubMed  Google Scholar 

  4. Adonaylo VN, Oteiza PI (1999) Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology 135:77–85

    Article  CAS  PubMed  Google Scholar 

  5. Weisbrot-Lefkowitz M, Reuhl K, Perry B, Chan PH, Inouye M, Mirochnitchenko O (1998) Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Mol Brain Res 53:333–338

    Article  CAS  PubMed  Google Scholar 

  6. Steullet P, Cabungcal JH, Kulak A et al (2010) Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. J Neurosci 30:2547–2558

    Article  CAS  PubMed  Google Scholar 

  7. Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19

    Article  PubMed  Google Scholar 

  8. Goyer RA (1990) Transplacental transport of lead. Environ Health Perspect 89:101–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lataillade GP, Thoreux-Manlay A, Coffigny H, Masse R, Soufir JC (1995) Reproductive toxicity of chronic lead exposure in male and female mice. Hum Exp Toxicol 14:872–878

    Article  Google Scholar 

  10. Namihira D, Saldivar N, Pustilnik N, Carreon GJ, Salinas ME (1993) Lead in human blood and milk from nursing women living near a smelter in Mexico city. J Toxicol Environ Health 388:225–232

    Article  Google Scholar 

  11. Hallen PI, Jorhem L, Oskarsson A (1995) Placental and lactational transfer of lead in rats: a study of the lactational process and effects on offspring. Arch Toxicol 69:596–602

    Article  CAS  PubMed  Google Scholar 

  12. Needleman HL (1993) The current status of childhood low-level lead toxicity. Neurotoxicology 14:161–166

    CAS  PubMed  Google Scholar 

  13. Markowitz M (2000) Lead poisoning: a disease for the next millennium. Curr Probl Pediatr 30:62–70

    CAS  PubMed  Google Scholar 

  14. Gurer H, Ozgunes H, Neal R et al (1998) Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats. Toxicology 128:181–189

    Article  CAS  PubMed  Google Scholar 

  15. Lu X, Jin C, Yang J et al (2013) Prenatal and lactational lead exposure enhanced oxidative stress and altered apoptosis status in offspring rats' hippocampus. Biol Trace Elem Res 151(1):75–84

    Article  CAS  PubMed  Google Scholar 

  16. Muller RU, Bostock E, Taube JS, Kubie JL (1994) On the directional firing properties of hippocampal place cells. J Neurosci 14(12):7235–7251

    CAS  PubMed  Google Scholar 

  17. Hayman R, Verriotis MA, Jovalekic A, Fenton AA, Jeffery KJ (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. Nat Neurosci 14(9):1182–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Holdstock JS, Mayes AR, Roberts N et al (2002) Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus 12:341–351

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths D, Dickinson A, Clayton N (1999) Episodic memory: what can animals remember about their past? Trends Cogn Sci 3:74–80

    Article  PubMed  Google Scholar 

  20. Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: a role of the hippocampus. Hippocampus 8:198–204

    Article  CAS  PubMed  Google Scholar 

  21. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neural learning machine? Science 272:1126–1131

    Article  CAS  PubMed  Google Scholar 

  22. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M (1999) Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiat 46(7):908–920

    Article  CAS  PubMed  Google Scholar 

  23. Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16(3):367–378

    Article  PubMed  Google Scholar 

  24. Kolb B (1990) Animal models for human PFC-related disorders. Prog Brain Res 85:501–519

    Article  CAS  PubMed  Google Scholar 

  25. Stuss DT, Alexander MP (2000) Executive functions and the frontal lobes: a conceptual view. Psychol Res 63:289–298

    Article  CAS  PubMed  Google Scholar 

  26. Winocur G, Moscovitch M (1999) Anterograde and retrograde amnesia after lesions to frontal cortex in rats. J Neurosci 19(21):9611–9617

    CAS  PubMed  Google Scholar 

  27. Moreira EG, Rosa GJ, Barros SB, Vassilieff VS, Vassillieff I (2001) Antioxidant defense in rat brain regions after developmental lead exposure. Toxicology 169(2):145–151

    Article  CAS  PubMed  Google Scholar 

  28. Verma SK, Dua R, Gill KD (2006) Impaired energy metabolism after co-exposure to lead and ethanol. Basic Clin Pharmacol Toxicol 96(6):475–479

    Article  Google Scholar 

  29. Barkur RR, Bairy LK (2014) Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats. Toxicol Ind Health. doi:10.1177/0748233714545624

    PubMed  Google Scholar 

  30. Jaako-Movits K, Zharkovsky T, Romantchik O et al (2005) Developmental lead exposure impairs contextual fear conditioning and reduces adult hippocampal neurogenesis in the rat brain. Int J Dev Neurosci 23:627–635

    Article  CAS  PubMed  Google Scholar 

  31. Heidmets LT, Zharkovsky T, Jurgenson M, Jaako-Movits K, Zharkovsky A (2006) Early postnatal, low-level lead exposure increases the number of PSA-NCAM expressing cells in the dentate gyrus of adult rat hippocampus. Neurotoxicology 27:39–43

    Article  CAS  PubMed  Google Scholar 

  32. Chen HH, Ma T, Paul IA, Spencer JL, Ho IK (1997) Developmental lead exposure and two-way active avoidance training alter the distribution of protein kinase C activity in the rat hippocampus. Neurochem Res 22:1119–1125

    Article  CAS  PubMed  Google Scholar 

  33. Glowinski J, Iverson LL (1966) Regional studies of catecholamines in the rat brain. The deposition of [3H]norepinephrine, [3H]dopamine, and [3H]dopa in various regions of the brain. J Neurochem 13(8):655–669

    Article  CAS  PubMed  Google Scholar 

  34. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  35. Wendel A (1981) Glutathione peroxidase. In: Jakoly WB (ed) Methods in enzymology, vol 7. Academic, New York, pp 325–333

    Google Scholar 

  36. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  38. Kuruvilla A, Pillay VV, Venkatesh T et al (2004) Portable lead analyzer to locate source of lead. Indian J Pediat 71:495–499

    Article  CAS  PubMed  Google Scholar 

  39. Quinlan GJ, Halliwell B, Moorhouse CP, Gutteridge JMC (1988) Action of lead(II) and aluminium(III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim Biophys Acta 962:196–200

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Wang L, Shen HB, Wang ZX, Wei QY, Chen F (2007) Association between delta-aminolevulinic acid dehydratase (ALAD) polymorphism and blood lead levels: a meta-regression analysis. J Toxicol Environ Health A 70:1986–1994

    Article  CAS  PubMed  Google Scholar 

  41. Flora SJS, Flora G, Saxena G, Mishra M (2007) Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol Biol 53:24–46

    Google Scholar 

  42. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14(7):1261–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hermes-Lima M, Pereira B, Bechara EJH (1991) Are free radicals involved in lead poisoning? Xenobiotica 21:1085–1090

    Article  CAS  PubMed  Google Scholar 

  44. Sandhir R, Julka D, Gill KD (1994) Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacol Toxicol 74:66–71

    Article  CAS  PubMed  Google Scholar 

  45. Schwartz BS, Lee BK, Lee GS (2000) Associations of blood lead, dimercaptosuccinic acid-chelatable lead and tibia lead with polymorphisms in the vitamin D receptor and 5-aminolevulinic acid dehydratase genes. Environ Health Perspect 108:949–954

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Shukla PK, Khanna VK, Khan MY, Srimal RC (2003) Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol 22(12):653–658

    Article  CAS  PubMed  Google Scholar 

  47. Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK et al (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 20(6):788–790

    CAS  PubMed  Google Scholar 

  48. Blaschke AJ, Weiner JA, Chun J (1998) Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 396:39–50

    Article  CAS  PubMed  Google Scholar 

  49. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and trigger cytochrome c release from mitochondria. Biochem J 345:271–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Manipal University, India, for providing the infrastructure facilities.

Funding

This research received no specific grant from any funding agency in the public, commercial or non-profit sectors.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxminarayana Kurady Bairy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkur, R.R., Bairy, L.K. Assessment of Oxidative Stress in Hippocampus, Cerebellum and Frontal Cortex in Rat Pups Exposed to Lead (Pb) During Specific Periods of Initial Brain Development. Biol Trace Elem Res 164, 212–218 (2015). https://doi.org/10.1007/s12011-014-0221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0221-3

Keywords

Navigation