Biological Trace Element Research

, Volume 164, Issue 1, pp 25–35 | Cite as

Differences Between Chemical Element Contents in Hyperplastic and Nonhyperplastic Prostate Glands Investigated by Neutron Activation Analysis

  • Vladimir ZaichickEmail author
  • Sofia Zaichick
  • German Davydov


In order to clarify the differences between Ag, Br, Ca, Co, Cr, Fe, Hg, K, Mg, Mn, Na, Rb, Sb, Sc, Se, and Zn contents in hyperplastic (patients with benign prostate hyperplasia (BPH), n = 32) and nonhyperplastic (control group of healthy male inhabitants, n = 32) prostates, an instrumental neutron activation analysis was performed. Mean values (M ± SΕΜ) for mass fraction (mg/kg, dry mass basis) of chemical elements in glands of patients with BPH were the following: Ag, 0.0346 ± 0.0060; Br, 30.4 ± 3.6; Ca, 2030 ± 165; Co, 0.0716 ± 0.0097; Cr, 1.073 ± 0.119; Fe, 130.0 ± 7.9; Hg, 0.232 ± 0.030; K, 14,470 ± 740; Mg, 1200 ± 80; Mn, 1.19 ± 0.09; Na, 11,610 ± 870; Rb, 14.7 ± 0.8; Sb, 0.163 ± 0.025; Sc, 0.0257 ± 0.0040; Se, 1.243 ± 0.079; and Zn, 1235 ± 92. It was observed that in BPH tissue, the mass fraction of Co (p < 0.015), Cr (p < 0.0002), Hg (p < 0.000007), K (p < 0.001), Rb (p < 0.048), Sb (p < 0.0001), and Se (p < 0.000001) were significantly higher than in controls. In the sixth to eighth decades, the mass fractions of almost all chemical elements in hyperplastic prostates did not depend from age. Our finding of correlation between pairs of prostatic chemical element mass fractions indicates that there is a great disturbance of prostatic chemical element relationships with a benign hyperplastic transformation. The results apparently confirm the disturbed homeostasis of Zn and Se and some other chemical elements in the etiology of BPH.


Prostate BPH Chemical element contents Homeostasis of chemical elements 



The authors are grateful to the late Prof. A. A. Zhavoronkov, Institute of Human Morphology, Russian Academy of Medical Sciences, Moscow, and Dr. Tatyana Sviridova, Medical Radiological Research Center, Obninsk, for supplying prostate specimens.


  1. 1.
    Robert G, Descazeaud A, Nicolaïew N, Terry S, Sirab N, Vacherot F, Maillé P, Allory Y, De La Taille A (2009) Inflammation in benign prostatic hyperplasia: a 282 patients’ immunohistochemical analysis. Prostate 69(16):1774–1780CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Roehrborn C, McConnell J (2002) Etiology, pathophysiology, epidemiology and natural history of benign prostatic hyperplasia. In: Walsh P, Retik A, Vaughan E, Wein A (eds) Campbell’s urology, 8th edn. Saunders, Philadelphia, pp 1297–1336Google Scholar
  3. 3.
    Lepor H (2005) Pathophysiology of benign prostatic hyperplasia in the aging male population. Rev Urol 7(Suppl 4):S3–S12Google Scholar
  4. 4.
    Lee KL, Peehl DM (2004) Molecular and cellular pathogenesis of benign prostatic hyperplasia. J Urol 172(5):1784–1791CrossRefPubMedGoogle Scholar
  5. 5.
    Corona G, Vignozzi L, Rastrelli G, Lotti F, Cipriani S, Maggi M (2014) Benign prostatic hyperplasia: a new metabolic disease of the aging male and its correlation with sexual dysfunctions. Int J Endocrinol Article 2014:329456. doi. 10.1155/2014/329456. Accessed 13 Feb 2014
  6. 6.
    Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50CrossRefPubMedGoogle Scholar
  7. 7.
    Carson C, Rittmaster R (2003) The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 61(4, Suppl 1):2–7CrossRefPubMedGoogle Scholar
  8. 8.
    Soulitzis N, Karyotis I, Delakas D, Spandidos DA (2006) Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol 29:305–314PubMedGoogle Scholar
  9. 9.
    Ho CKM, Habib FK (2011) Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol 8:29–41CrossRefPubMedGoogle Scholar
  10. 10.
    Patel ND, Parsons JK (2014) Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J Urol 30:170–176CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zaichick V, Zaichick S (1999) Role of zinc in prostate cancerogenesis. In: Anke M. et al. (eds) Mengen und Spurenelemente. 19 Arbeitstagung. Friedrich-Schiller-Universitat, Jena, pp 104–115Google Scholar
  12. 12.
    Zaichick V (2004) INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem 262:229–234CrossRefGoogle Scholar
  13. 13.
    Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946CrossRefPubMedGoogle Scholar
  14. 14.
    Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35:285–296CrossRefPubMedGoogle Scholar
  15. 15.
    Zaichick S, Zaichick V (2013) Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology 1:139–146CrossRefPubMedGoogle Scholar
  16. 16.
    Zaichick V, Zaichick S (2013) The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. Appl Radiat Isot 82:145–151CrossRefPubMedGoogle Scholar
  17. 17.
    Zaichick V, Zaichick S (2013) INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem 298(3):1559–1566CrossRefGoogle Scholar
  18. 18.
    Zaichick V, Zaichick S (2013) NAA-SLR and ICP-AES application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res 156(1):357–366CrossRefPubMedGoogle Scholar
  19. 19.
    Zaichick V, Zaichick S (2013) Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. Am J Anal Chem 4:696–706CrossRefGoogle Scholar
  20. 20.
    Zaichick V, Zaichick S (2014) Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res 2(2):1–9. doi: 10.4172/2327-4360.1000121
  21. 21.
    Zaichick S, Zaichick V (2011) The Br, Fe, Rb, Sr, and Zn content and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy dispersive X-ray fluorescent analysis. X-Ray Spectrom 40:464–469CrossRefGoogle Scholar
  22. 22.
    Zaichick S, Zaichick V (2011) The effect of age on Ag, Co, Cr, Fe, Hg, Sb, Sc, Se, and Zn contents in intact human prostate investigated by neutron activation analysis. Appl Radiat Isot 69:827–833CrossRefPubMedGoogle Scholar
  23. 23.
    Zaichick V, Nosenko S, Moskvina I (2012) The effect of age on 12 chemical element contents in intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res 147:49–58CrossRefPubMedGoogle Scholar
  24. 24.
    Zaichick S, Zaichick V, Nosenko S, Moskvina I (2012) Mass fractions of 52 trace elements and Zinc trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 149:171–183CrossRefPubMedGoogle Scholar
  25. 25.
    Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals 14(3–4):331–341CrossRefPubMedGoogle Scholar
  26. 26.
    Helmersson A, von Arnold S, Bozhkov PV (2008) The level of free intracellular zinc mediates programmed cell death/cell survival decisions in plant embryos. Plant Physiol 147:1158–1167CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Shanker AK (2008) Mode of action and toxicity of trace elements. In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination, and health implications. John Wiley & Son Inc., Hoboken, NJ, pp 525–555Google Scholar
  28. 28.
    Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315(14):2463–2470CrossRefPubMedGoogle Scholar
  29. 29.
    Tipton JH, Steiner RL, Foland WD, Mueller J, Stanley M (1954) USAEC-ORNL-Report-CF-54-12-66Google Scholar
  30. 30.
    Stitch SR (1957) Trace elements in human tissue. I. A semi-quantitative spectrographic survey. Biochem J 67:97–103PubMedCentralPubMedGoogle Scholar
  31. 31.
    Sangen H (1967) The influence of the trace metals upon the aconitase activity in human prostate glands. Jpn J Urol 58:1146–1159Google Scholar
  32. 32.
    Tipton IH, Cook MJ (1963) Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys 9:103–145CrossRefPubMedGoogle Scholar
  33. 33.
    Györkey F, Min K-W, Huff JA, Györkey P (1967) Zinc and magnesium in human prostate gland: normal, hyperplastic, and neoplastic. Cancer Res 27:1349–1353Google Scholar
  34. 34.
    Liebscher K, Smith H (1968) Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health 17:882–891CrossRefGoogle Scholar
  35. 35.
    Hienzsch E, Schneider H-J, Anke M (1970) Vergleichende untersuchungen zum mengen- und spurenelementgehalt der normalen prostata, des prostataadenoms und des prostatakarzinoms. Z Urol Nephrol 63:543–546PubMedGoogle Scholar
  36. 36.
    Schneider H-J, Anke M, Holm W (1970) The inorganic components of testicle, epididymis, seminal vesicle, prostate and ejaculate of young men. Int Urol Nephrol 2:419–427CrossRefGoogle Scholar
  37. 37.
    Soman SD, Joseph KT, Raut SJ, Mulay GD, Parameswaran M, Pandey VK (1970) Studies of major and trace element content in human tissues. Health Phys 19:641–656CrossRefPubMedGoogle Scholar
  38. 38.
    Forssen A (1972) Inorganic elements in the human body. I. occurrence of Ba, Br, Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y and Zn in the human body. Ann Med Exp Biol (Finland) 50:99–162Google Scholar
  39. 39.
    Anspaugh LR, Robinson WL, Martin WH, Lowe OA (1973) Compilation of published information on elemental concentrations in human organs in both normal and diseased states. No. UCRL-51013Pt. 1971–1973, pp. 1–4Google Scholar
  40. 40.
    Kubo H, Hashimoto S, Ishibashi A, Chiba R, Yokota H (1976) Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections. Med Phys 3:204–209CrossRefPubMedGoogle Scholar
  41. 41.
    Jafa A, Mahendra NM, Chowdhury AR, Kamboj VP (1980) Trace elements in prostatic tissue and plasma in prostatic diseases of man. Indian J Cancer 17:34–37PubMedGoogle Scholar
  42. 42.
    Marezynska A, Kulpa J, Lenko J (1983) The concentration of zinc in relation to fundamental elements in the diseases human prostate. Int Urol Nephrol 15:257–26CrossRefGoogle Scholar
  43. 43.
    Feustel A, Wennrich R, Dittrich H (1987) Zinc, cadmium and selenium concentrations in separated epithelium and stroma from prostatic tissues of different histology. Urol Res 15(3):161–163CrossRefPubMedGoogle Scholar
  44. 44.
    Banaś A, Kwiatek WM, Zając W (2001) Trace element analysis of tissue section by means of synchrotron radiation: the use of GNUPLOT for SPIXE spectra analysis. J Alloys Compd 328(1–2):135–138Google Scholar
  45. 45.
    Kwiatek WM, Banas A, Gajda M, Gałka M, Pawlicki B, Falkenberg G, Cichocki T (2005) Cancerous tissues analyzed by SRIXE. J Alloys Compd 401:173–177CrossRefGoogle Scholar
  46. 46.
    Kwiatek WM, Banas A, Banas K, Podgorczyk M, Dyduch G, Falkenberg G, Gajda M, Cichocki T (2006) Distinguishing prostate cancer from hyperplasia. Acta Phys Polon 109(3):377–381Google Scholar
  47. 47.
    Guntupalli JNR, Padala S, Gummuluri AVRM, Muktineni RK, Byreddy SR, Sreerama L, Kedarisetti PC, Angalakuduru DP, Satti BR, Venkatathri V, Pullela VBRL, Gavarasana S (2007) Trace elemental analysis of normal, benign, hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 16:108–115CrossRefPubMedGoogle Scholar
  48. 48.
    Sarafanov AG, Todorov TI, Kajdacsy-Balla A, Gray MA, Macias V, Centeno JA (2008) Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry. J Trace Elem Med Biol 22:305–314CrossRefPubMedGoogle Scholar
  49. 49.
    Sapota A, Daragó A, Taczalski J, Kilanowicz A (2009) Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. BioMetals 22:1041–1049CrossRefPubMedGoogle Scholar
  50. 50.
    Tohno S, Kobayashi M, Shimizu H, Tohno Y, Suwannahoy P, Azuma C, Minami T, Sinthubua A, Mahakkanukrauh P (2009) Age-related changes of the concentrations of select elements in the prostates of Japanese. Biol Trace Elem Res 127:211–227CrossRefPubMedGoogle Scholar
  51. 51.
    Schöpfer J, Drasch G, Schrauzer GN (2010) Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biol Trace Elem Res 134:180–187CrossRefPubMedGoogle Scholar
  52. 52.
    Zaichick S, Zaichick V (2010) Method and portable facility for energy-dispersive X-ray fluorescent analysis of zinc content in needle-biopsy specimens of prostate. X-Ray Spectrom 39:83–89CrossRefGoogle Scholar
  53. 53.
    Zaichick S, Zaichick V (2012) Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. Appl Radiat Isot 70:81–87CrossRefPubMedGoogle Scholar
  54. 54.
    Christudoss P, Selvakumar R, Fleming JJ, Gopalakrishnan G (2011) Zinc status of patients with benign prostatic hyperplasia and prostate carcinoma. Indian J Urol 27(1):14–18CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Neslund-Dudas C, Kandegedara A, Kryvenko ON, Gupta N, Rogers C, Rybicki BA, Ping Dou Q, Mitra B (2014) Prostate tissue metal levels and prostate cancer recurrence in smokers. Biol Trace Elem Res 157(2):107–112CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Zaichick V, Zaichick S (2014) Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 36(1):167–181CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Zaichick V, Zaichick S (2014) INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 90:62–73CrossRefPubMedGoogle Scholar
  58. 58.
    Zaichick V, Zaichick S (2014) Determination of trace elements in adults and geriatric prostate combining neutron activation with inductively coupled plasma atomic emission spectrometry. Open J Biochem 1(2):16–33Google Scholar
  59. 59.
    Zaichick V, Zaichick S (2014) Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem 301(2):383–397CrossRefGoogle Scholar
  60. 60.
    Picurelli L, Olcina PV, Roig MD, Ferrer J (1991) Determination of Fe, Mg, Cu, and Zn in normal and pathological prostatic tissue. Actas Urol Esp 15:344–350PubMedGoogle Scholar
  61. 61.
    Tyloch J, Szewczyk-Golec K, Mlodzik N, Wolski Z, Zachara BA (2000) Selenium level, glutathione peroxidase and glutathione-S-transferase activities in malignant tissue of prostate cancer patients: a preliminary study. In: Anke M. et al. (eds) Mengen und Spurenelemente. 20 Arbeitstagung. Friedrich-Schiller-Universität, Jena, pp 766–773Google Scholar
  62. 62.
    Arnold WN, Thrasher JB (2003) Selenium concentration in the prostate. Biol Trace Elem Res 91(3):277–280CrossRefPubMedGoogle Scholar
  63. 63.
    Gianduzzo TRJ, Holmes EG, Tinggi U, Shahin M, Mactaggart P, Nicol D (2003) Prostatic and peripheral blood selenium levels after oral supplementation. J Urol 170:870–873CrossRefPubMedGoogle Scholar
  64. 64.
    Zachara BA, Scewezyk-Golec K, Tyloch J, Wolski Z, Szylberg T, Stepien S, Kwiatkowsky S, Bloch-Boguslavska E, Wasowicz W (2005) Blood and tissue selenium concentrations and glutathione peroxydase activities in patients with prostate cancer and benign prostate hyperplasia. Neoplasma 52(3):248–254PubMedGoogle Scholar
  65. 65.
    Zachara BA, Szewczyk-Golec K, Wolski Z, Tyloch J, Skok Z, Bloch-Boguslawska E, Wasowicz W (2005) Selenium level in benign and cancerous prostate. Biol Trace Elem Res 103(3):199–206CrossRefPubMedGoogle Scholar
  66. 66.
    Leitão RG, Palumbo AJ, Correia R C, Souza PAVR, Canellas CGL, Anjos M J, Nasciutti LE, Lopes RT (2009) Elemental concentration analysis in benign prostatic hyperplasia tissue cultures by SR-TXRF. Brazilian Synchrotron Light Laboratory, Activity Report, pp.1–2
  67. 67.
    Muecke R, Klotz T, Giedl J, Buentzel J, Kundt G, Kisters K, Prott FJ, Micke O (2009) Whole blood selenium levels (WBSL) in patients with prostate cancer (PC), benign prostatic hyperplasia (BPH) and healthy male inhabitants (HMI) and prostatic tissue selenium levels (PTSL) in patients with PC and BPH. Acta Oncol 48(3):452–456CrossRefPubMedGoogle Scholar
  68. 68.
    Kiziler AR, Aydemir B, Guzel S, Alici B, Ataus S, Tuna MB, Durak H, Kilic M (2010) May the level and ratio changes of trace elements be utilized in identification of disease progression and grade in prostatic cancer? Trace Elem Electrolyte 27(2):65–72CrossRefGoogle Scholar
  69. 69.
    Lopes RT, Lima I, Pereira GR, Perez CA (2011) Synchrotron radiation X-ray microfluorescence techniques and biological applications. Pramana – J Phys 76(2):271–279Google Scholar
  70. 70.
    Guzel S, Kiziler L, Aydemir B, Alici B, Ataus S, Aksu A, Durak H (2012) Association of Pb, Cd, and Se concentrations and oxidative damage-related markers in different grades of prostate carcinoma. Biol Trace Elem Res 145(1):23–32CrossRefPubMedGoogle Scholar
  71. 71.
    Zaichick S, Zaichick V (2014) EDXRF determination of trace element contents in benign prostatic hypertrophic tissue. In: Fundamental interactions and neutrons, neutron spectroscopy, nuclear structure, ultracold neutrons, related topics. Joint Institute for Nuclear Research, Dubna, pp 311–316Google Scholar
  72. 72.
    Zaichick V (1997) Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of health-related environmental measurements using nuclear and isotopic techniques. IAEA, Vienna, pp 123–133Google Scholar
  73. 73.
    Zaichick V (2004) Losses of chemical elements in biological samples under the dry ashing process. Trace Elem Med (Moscow) 5(3):17–22Google Scholar
  74. 74.
    Zaichick V (2006) Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 269:303–309CrossRefGoogle Scholar
  75. 75.
    Zaichick V (1995) Applications of synthetic reference materials in the Medical Radiological Research Centre. Fresenius J Anal Chem 352:219–223CrossRefGoogle Scholar
  76. 76.
    Korelo AM, Zaichick V (1993) Software to optimize the multielement INAA of medical and environmental samples. In: Activation analysis in environment protection. Joint Institute for Nuclear Research, Dubna, Russia, pp.326–332Google Scholar
  77. 77.
    Woodard HQ, White DR (1986) The composition of body tissues. Br J Radiol 59(708):1209–1218CrossRefPubMedGoogle Scholar
  78. 78.
    Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS (1990) Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environ Res 52:126–145CrossRefPubMedGoogle Scholar
  79. 79.
    Terry J (1994) The major electrolytes: sodium, potassium, and chloride. J Intraven Nurs 17(5):240–247PubMedGoogle Scholar
  80. 80.
    Zaichick V, Zaichick S (2014) Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res 157(3):195–204CrossRefPubMedGoogle Scholar
  81. 81.
    Zaichick V, Zaichick S (2014) Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Advances in Biomedical Science and Engineering 1(1): 26–-42
  82. 82.
    Zaichick V, Zaichick S (2014) Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals 27(2):333–348CrossRefPubMedGoogle Scholar
  83. 83.
    Zaichick V, Zaichick S (2014) The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. J Clin Lab Investig Updat 2(1):1–15CrossRefGoogle Scholar
  84. 84.
    Mawson CA, Fischer MJ (1952) The occurrence of zinc in the human prostate gland. Can J Med Sci 30:336–339PubMedGoogle Scholar
  85. 85.
    Shirakawa T (1961) Clinical and experimental study on quantitative analysis of zinc in prostate. Acta Urol Jpn 7(3):352–362Google Scholar
  86. 86.
    Habib FK (1980) Evaluation of androgen metabolism studies in human prostate cancer—correlation with zinc levels. Prev Med 9(5):650–656CrossRefPubMedGoogle Scholar
  87. 87.
    Mocchegiani E, Muaaioli M, Giacconi R (2000) Zinc, metallothioneins, immune responses, survival and ageing. Biogerontology 1:133–143CrossRefPubMedGoogle Scholar
  88. 88.
    Ekmekcioglu C (2001) The role of trace elements for the health of elderly individuals. Nahrung 45:309–316CrossRefPubMedGoogle Scholar
  89. 89.
    High KP (2001) Nutritional strategies to boost immunity and prevent infection in elderly individuals. Clin Infect Dis 33:1892–1900CrossRefPubMedGoogle Scholar
  90. 90.
    Padro L, Benacer R, Foix S, Maestre E, Murillo S, Sanvicens E, Somoza D, Ngo J, Cervera P (2002) Assessment of dietary adequacy for an elderly population based on a Mediterranean model. J Nutr Health Aging 6:31–33PubMedGoogle Scholar
  91. 91.
    Vaquero MP (2002) Magnesium and trace elements in the elderly: intake, status and recommendations. J Nutr Health Aging 6:147–153PubMedGoogle Scholar
  92. 92.
    Costello LC, Franklin RB, Feng P, Tan M, Bagasra O (2005) Zinc and prostate cancer. a critical scientific, medical and public interest issue (United States). Cancer Causes Control 16:901–915CrossRefPubMedGoogle Scholar
  93. 93.
    Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5(1):17–30CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vladimir Zaichick
    • 1
    Email author
  • Sofia Zaichick
    • 1
    • 2
  • German Davydov
    • 3
  1. 1.Radionuclide Diagnostics DepartmentMedical Radiological Research CentreObninskRussia
  2. 2.Department of MedicineUniversity of Illinois College of MedicineChicagoUSA
  3. 3.Radionuclide Diagnostics DepartmentMedical Radiological Research CentreObninskRussia

Personalised recommendations