Skip to main content
Log in

Novel Rare Earth Tungstoarsenate Heteropolyoxometalates K11[Ln(AsW11O39)2]·xH2O (Ln = La, Nd, Sm) Binding to Bovine Serum Albumin: Spectroscopic Approach

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The rare earth salts of heteropoly have been widely applied in many fields. In this study, the biological activity of rare earth tungstoarsenate heteropolyoxometalates K11[Ln(AsW11O39)2]·xH2O (abbr. LnW11, Ln = La (x = 24), Nd (x = 17), and Sm (x = 19)) were investigated by spectroscopic methods including fluorescence spectroscopy and UV–vis absorption spectroscopy at different temperatures. In the mechanism discussion, it was proved that the fluorescence quenching of bovine serum albumin (BSA) by LnW11 is initiated by complex formation. The thermodynamic parameters suggested that the binding of LnW11 to BSA is spontaneous, and the mainly force is electrostatic interactions. Site marker competitive experiments demonstrated that LaW11 binds with high affinity to site I (subdomain IIA) of BSA; but SmW11 and NdW11 bind with affinity to both site I (subdomain IIA) and site II (subdomain IIIA) of BSA. The results of synchronous fluorescence spectrum indicate that the secondary structure of BSA molecules was changed in the presence of LnW11. In addition, the binding parameters, binding site number, and effect of metal ions on LnW11–BSA were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shigeta S, Mori S, Yamase T, Yamamoto N, Yamamoto N (2006) Anti-RNA virus activity of polyoxometalates. Biomed Pharmacother 60:211–219

    Article  CAS  PubMed  Google Scholar 

  2. Dianat S, Bordbar AK, Tangestaninejad S, Yadollahi B, Zarkesh-Esfahani SH, Habibi P (2013) ctDNA binding affinity and in vitro antitumor activity of three Keggin type polyoxotungestates. J Photochem Photobiol B Biol 124:27–33

    Article  CAS  Google Scholar 

  3. Marcì G, García–López EI, Palmisano L (2014) Heteropolyacid–based materials as heterogeneous photocatalysts. Eur J Inorg Chem 21–35

  4. Tan R, Pang X, Ren Y, Wang X, Li R (2011) Synthesis and crystal structure of a rare tetra-yttrium-supported Krebs-type tungstoantimonate. Z Anorg Allg Chem 637:1178–1180

    Article  CAS  Google Scholar 

  5. Sartorel A, Carraro M, Bagno A, Scorrano G, Bonchio M (2008) H2O2 activation by heteropolyacids with defect structures: the case of γ–[(XO4) W10O32]n− (X = Si, Ge, n = 8; X = P, n = 7). J Phys Org Chem 21:596–602

    Article  CAS  Google Scholar 

  6. Heravi MM, Behbahani FK, Oskooie HA, Bamoharram FF (2008) H14 [NaP5W29MoO110]: a novel and useful catalyst for aminolysis of epoxides with amines under solvent-free conditions. Chinese J Chem 26:2150–2154

    Article  CAS  Google Scholar 

  7. Heravi MM, Faghihi Z (2014) Applications of heteropoly acids in multi-component reactions. J Iran Chem Soc 11:209–224

    Article  CAS  Google Scholar 

  8. Song YM, Xu JP, Ding L, Hou Q, Liu JW, Zhu ZL (2009) Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1, 10-phenanthroline-5, 6-dione. J Inorg Biochem 103:396–400

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Liu S, Miao L, Yu L, Wang Y, Guo F (2013) Inhibitory effect of lanthanum chloride on migration and invasion of cervical cancer cells. J Rare Earth 31:94–100

    Article  CAS  Google Scholar 

  10. Wang Q, Jin W, Wu G, Zhao Y, Jin X, Hu X, Zhou J, Tang G, Chu PK (2014) Rare-earth-incorporated polymeric vector for enhanced gene delivery. Biomaterials 35:479–488

    Article  CAS  PubMed  Google Scholar 

  11. Ochi K, Tanaka Y, Tojo S (2014) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biot 41:403–414

    Article  CAS  Google Scholar 

  12. Zhang R, Shang J, Xin J, Xie B, Li Y, Möhwald H (2014) Self-assemblies of luminescent rare earth compounds in capsules and multilayers. Adv Colloid Interfac 207:361–375

    Article  CAS  Google Scholar 

  13. Wang C, Cao L (2011) Preparation, spectral characteristics and photocatalytic activity of Eu3+–doped WO3 nanoparticles. J Rare Earth 29:727–731

    Article  CAS  Google Scholar 

  14. Lu Y, Xu Y, Li Y, Wang E, Xu X, Ma Y (2006) New polyoxometalate compounds built up of lacunary Wells–Dawson anions and trivalent lanthanide cations. Inorg Chem 45:2055–2060

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Shang H, Feng C (2014) Preparation of Y–H3PW12O40/TiO2 and La–H3PW12O40/TiO2 by hydrothermal method and its photocatalytic activity for dinitrotoluene decomposition. J Rare Earth 32:17–22

    Article  CAS  Google Scholar 

  16. Gupta R, Saini MK, Doungmene F, Oliveira P, Hussain F (2014) Lanthanoid containing phosphotungstates: the syntheses, crystal structure, electrochemistry, photoluminescence and magnetic properties. Dalton T 43:8290–8299

    Article  CAS  Google Scholar 

  17. Huang W, Schopfer M, Zhang C, Howell RC, Todaro L, Gee BA, Francesconi LC, Polenova T (2008) 31P Magic angle spinning NMR spectroscopy of paramagnetic rare-earth-substituted Keggin and Wells–Dawson solids. J Am Chem Soc 130:481–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Saini MK, Gupta R, Parbhakar S, Mishra AK, Mathur R, Hussain F (2014) Dimeric complexes of rare-earth substituted Keggin-type silicotungstates: syntheses, crystal structure and solid state properties. RSC Adv 4:25357–25364

    Article  CAS  Google Scholar 

  19. Kragh–Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    PubMed  Google Scholar 

  20. Hu YJ, Ou–Yang Y, Bai AM, Zhao RM, Liu Y (2010) A series of novel rare earth molybdotungstosilicate heteropolyoxometalates binding to bovine serum albumin: spectroscopic approach. Biol Trace Elem Res 136:8–17

    Article  CAS  PubMed  Google Scholar 

  21. Cao S, Liu B, Li Z, Chong B (2014) A fluorescence spectroscopic study of the interaction between glipizide and bovine serum albumin and its analytical application. J Lumin 145:94–99

    Article  CAS  Google Scholar 

  22. Hu YJ, Liu Y, Jiang W, Zhao RM, Qu SS (2005) Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6–mercaptopurine. J Photochem Photobiol B Biol 80:235–242

    Article  CAS  Google Scholar 

  23. Shahabadi N, Fili SM (2014) Molecular modeling and multispectroscopic studies of the interaction of mesalamine with bovine serum albumin. Spectrochim Acta A 118:422–429

    Article  CAS  Google Scholar 

  24. Rub MA, Khan JM, Asiri AM, Khan RH, Din K (2014) Study on the interaction between amphiphilic drug and bovine serum albumin: a thermodynamic and spectroscopic description. J Lumin 155:39–46

    Article  CAS  Google Scholar 

  25. Hu YJ, Wang Y, Ouyang Y, Zhou J, Liu Y (2010) Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. J Lumin 130:1394–1399

    Article  CAS  Google Scholar 

  26. Zhang HH, Xu XQ, Zhou BB (2005) Synthesis and characterization of β2-Keggin structure heteropolytungstoarsenates containing rare earth elements. Chem Adhesion 27:325–327

    CAS  Google Scholar 

  27. Lehrer SS (1971) Solute perturbation of protein fluorescence. quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Zhong Q (2012) Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry. J Agric Food Chem 60:1880–1886

    Article  CAS  PubMed  Google Scholar 

  29. Yue HL, Hu YJ, Chen J, Bai AM, Ou–Yang Y (2014) Green synthesis and physical characterization of Au nanoparticles and their interaction with bovine serum albumin. Colloid Surface B 122:107–114

    Article  CAS  Google Scholar 

  30. Colmenarejo G, Alvarez–Pedraglio A, Lavandera JL (2001) Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem 44:4370–4378

    Article  CAS  PubMed  Google Scholar 

  31. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  32. Zhang Y, Xu ZQ, Liu XR, Qi ZD, Jiang FL, Liu Y (2012) Conformation and thermodynamic properties of the binding of vitamin C to human serum albumin. J Solution Chem 41:351–366

    Article  CAS  Google Scholar 

  33. Bhattacharya AA, Grüne T, Curry S (2000) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol 303:721–732

    Article  CAS  PubMed  Google Scholar 

  34. Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2009) Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11:106–112

    Article  Google Scholar 

  35. Lloyd JBF (1971) Synchronized excitation of fluorescence emission spectra. Nature 231:64–65

    CAS  Google Scholar 

  36. Hu YJ, Liu Y, Wang JB, Xiao XH, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharmaceut Biomed 36:915–919

    Article  CAS  Google Scholar 

  37. Hu YJ, Liu Y, Hou AX, Zhao RM, Qu XS, Qu SS (2004) Studies on the interaction between rare-earth salts of heteropoly EuHSiMo10W2O40 · 25H2O and bovine serum albumin. Acta Chim Sin 62:1519–1523

    CAS  Google Scholar 

  38. Bai AM, Ouyang Y, Yue HL, Li XL, Hu YJ (2012) Lanthanide salts of heteropoly molybdotungstosilicate LnHSiMo10W2O40 · xH2O (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Yb) binding to bovine serum albumin: a fluorescence quenching study. Biol Trace Elem Res 147:359–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21273065), and the Research Foundation of Education Bureau of Hubei Province, China (Nos. B20132502, Q20122205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Min Bai or Yan-Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Cheng, LY., Bai, AM. et al. Novel Rare Earth Tungstoarsenate Heteropolyoxometalates K11[Ln(AsW11O39)2]·xH2O (Ln = La, Nd, Sm) Binding to Bovine Serum Albumin: Spectroscopic Approach. Biol Trace Elem Res 163, 275–282 (2015). https://doi.org/10.1007/s12011-014-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0183-5

Keywords

Navigation