Skip to main content
Log in

Studies on Different Iron Source Absorption by in Situ Ligated Intestinal Loops of Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the iron source absorption in the small intestine of broiler. In situ ligated intestinal loops of 70 birds were poured into one of seven solutions, including inorganic iron (FeSO4, Fe2(SO4)3), organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)), the mixtures (FeSO4 with glycine (Fe+Gly(II)), Fe2(SO4)3 with glycine (Fe+Gly(III)), and no Fe source (control). The total volume of 3-mL solution (containing 1 mg of elemental Fe) was injected into intestinal loops, and then 120-min incubation was performed. Compared with inorganic iron groups, in which higher FeSO4 absorption than Fe2(SO4)3 was observed, supplementation with organic Fe glycine chelate significantly increased the Fe concentration in the duodenum and jejunum (P < 0.05), however, decreased DMT1 and DcytB messenger RNA (mRNA) levels (P < 0.05). Organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)) increased serum iron concentration (SI), compared with inorganic 3 valence iron groups (Fe2(SO4)3 and Fe+Gly(III)) (P < 0.05); moreover, lower TIBC value was observed for the chelate (P < 0.05); however, mixture of inorganic iron and glycine did not have a positive role at DMT1 and DcytB mRNA levels, SI and Fe concentrations in the small intestine. Those results indicated that the absorption of organic Fe glycine chelate was more effective than that of inorganic Fe, and the orders of iron absorption in the small intestine were: Fe-Gly(II), Fe-Gly(III) > FeSO4, Fe+Gly(II) > Fe2(SO4)3, Fe+Gly(III). Additionally, the simple mixture of inorganic iron and glycine could not increase Fe absorption, and the duodenum was the main site of Fe absorption in the intestines of broilers and the ileum absorbed iron rarely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153(1):42–54

    Article  CAS  PubMed  Google Scholar 

  2. Cook JD (1990) Adaptation in iron metabolism. Am J Clin Nutr 51(2):301–308

    CAS  PubMed  Google Scholar 

  3. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock, 3rd edn. CAB, Wallingford

    Book  Google Scholar 

  4. Creech BL, Spears JW, Flowers WL, Hill GM, Lloyd KE, Armstrong TA, Engle TE (2004) Effect of dietary trace mineral concentration and source (inorganic vs. chelated) on performance, mineral status, and fecal mineral excretion in pigs from weaning through finishing. J Anim Sci 82(7):2140–2147

    CAS  PubMed  Google Scholar 

  5. Seo SH, Lee HK, Lee WS, Shin KS, Paik IK (2008) The effect of level and period of Fe-methionine chelate supplementation on the iron content of boiler meat. Asian-Aust J Anim Sci 21(10):1501–1505

    Article  CAS  Google Scholar 

  6. WenQiang M, Jing W, Zhao Z, Hong S, Min Y, Jie F (2013) Comparison of absorption characteristics of iron glycine chelate and ferrous sulfate in Caco-2 cells. Int J Agric Biol 5(2):372–376

    Google Scholar 

  7. Oscar P, Ashmead HD (2001) Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 17(5):381–384

    Article  Google Scholar 

  8. Feng J, Ma WQ, Xu ZR, Wang YZ, Liu JX (2007) Effects of iron glycine chelate on growth, haematological and immunological characteristics in weaning pigs. Anim Feed Sci Technol 134(3):261–272

    Article  CAS  Google Scholar 

  9. Ma WQ, Sun H, Zhou Y, Wu J, Feng J (2012) Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biol Trace Elem Res 149(2):204–211

    Article  CAS  PubMed  Google Scholar 

  10. Lyons TP (1994) Biotechnology in fed industry: 1994 and beyond. in: Biotechnology in fed industry. Nottingham University, England, PP 1–50

  11. Ashmead D (1979) The influence of chelated iron proteinate fed to sows with no iron supplementation to their baby pigs. J Anim Sci 49:235

    Google Scholar 

  12. Kroe D, Kinney TD, Kaufman N, Klavins JV (1963) The influence of amino acids on iron absorption. Blood 21(5):546–552

    CAS  PubMed  Google Scholar 

  13. Van Campen D, Gross E (1969) Effect of histidine and certain other amino acids on the absorption of Iron-59 by rats. J Nutr 99(1):68–74

    PubMed  Google Scholar 

  14. Zhang TY (2002) Technique of phytase evaluation by digestion in vitro. Degree Dissertation, Chinese Academy of Agricultural Sciences

  15. Yu Y, Lu L, Luo XG, Liu B (2008) Kinetics of zinc absorption by in situ ligated intestinal loops of broilers involved in zinc transporters. Poult Sci 87(6):1146–1155

    Article  CAS  PubMed  Google Scholar 

  16. Melvin JS (1984) Duke’s physiology of domestic animals, 10th edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  17. Tako E, Rutzke MA, Glahn RP (2010) Using the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailability. Poult Sci 89(3):514–521

    Article  CAS  PubMed  Google Scholar 

  18. Zhou guilian (2000) Nutritional mechanism and relative availability of iron amino acid chelate, Ph. D. dissertation, Northeast Agricultural University

  19. Hill GM, Miller ER, Whetter PA, Ullrey DE (1983) Concentration of minerals in tissues of pigs from dams fed different levels of dietary zinc. J Anim Sci 57(1):130–138

    CAS  PubMed  Google Scholar 

  20. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  21. Tchernitchko D, Bourgeois M, Martin M, Beaumont C (2002) Expression of the two mRNA isoforms of the iron transporter Nrmap2/DMTI in mice and function of the iron responsive element. Biochem J 363:449–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  23. Mete A, Jalving R, van Oost BA, van Dijk JE, Marx JJ (2005) Intestinal over-expression of iron transporters induces iron overload in birds in captivity. Blood Cells Mol Dis 34(2):151–156

    Article  CAS  PubMed  Google Scholar 

  24. Yu Y, Lu L, Wang RL, Xi L, Luo XG, Liu B (2010) Effects of zinc source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poult Sci 89(10):2157–2165

    Article  CAS  PubMed  Google Scholar 

  25. Kulkarni RC, Shrivastava HP, Mandal AB, Deo C, Deshpande KY, Singh R, Bhanja SK (2011) Assessment of growth performance, immune response and mineral retention in colour broilers as influenced by dietary iron. Anim Feed Sci Technol 11:81–90

    CAS  Google Scholar 

  26. Layrisse M, García-Casal MN, Solano L, Barón MA, Arguello F, Llovera D, Ramirez J, Leets I, Tropper E (2000) Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J Nutr 130(9):2195–2199

    CAS  PubMed  Google Scholar 

  27. Han O, Failla ML, Hill AD, Morris ER, SMITH JC (1995) Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J Nutr 125:1291–1299

    CAS  PubMed  Google Scholar 

  28. Salovaara S, Sandberg AS, Andlid T (2003) Combined impact of pH and organic acids on iron uptake by Caco-2 cells. J Agr Food Chem 51(26):7820–7824

    Article  CAS  Google Scholar 

  29. Ji F, Luo XG, Lu L, Liu B, Yu SX (2006) Effects of manganese source and calcium on manganese uptake by in vitro everted gut sacs of broiler’s intestinal segments. Poult Sci 85(7):1217–1225

    Article  CAS  PubMed  Google Scholar 

  30. Seal CJ, Heaton FW (1983) Chemical factors affecting the intestinal absorption of zinc in vitro and in vivo. Br J Nutr 50(02):317–324

    Article  CAS  PubMed  Google Scholar 

  31. Wapnir RA, Khani DE, Bayne MA, Lifshitz F (1983) Absorption of zinc by the rat ileum: effects of histidine and other low-molecular-weight ligands. J Nutr 113(7):1346–1354

    CAS  PubMed  Google Scholar 

  32. Hallberg L, Solvell L (1965) A method for simultaneous determination of iron absorption, plasma volume, and plasma iron turnover in man. Scand J Haematol 2:187–194

    Article  CAS  PubMed  Google Scholar 

  33. da Silva Ferreira L, Dutra-de-Oliveira JE, Marchini JS (2004) Serum iron analysis of adults receiving three different iron compounds. Nutr Res 24:603–611

    Article  Google Scholar 

  34. Tietz NW, Burtis CA, Ashwood ER (1999) Tietz textbook of clinical chemistry, 3rd edn. Saunders WB, Centennial

    Google Scholar 

  35. Van Campen DR, Mitchell EA (1965) Absorption of Cu64, Zn65, Mo99, and Fe59 from ligated segments of the rat gastrointestinal tract. J Nutr 86(2):120–124

    Google Scholar 

  36. Courville P, Chaloupka R, Cellier MF (2006) Recent progress in structure–function analyses of Nramp proton-dependent metal ion transporters. Biochem Cell Biol 84(6):960–978

    Article  CAS  PubMed  Google Scholar 

  37. Ludwiczek S, Theurl I, Artner-Dworzak E, Chorney M, Weiss G (2004) Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J Mol Med 82(6):373–382

    Article  CAS  PubMed  Google Scholar 

  38. Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L (2012) Mechanisms of mammalian iron homeostasis. Biochem 51(29):5705–5724

    Article  CAS  Google Scholar 

  39. Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G et al (2001) Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120(6):1412–1419

    Article  CAS  PubMed  Google Scholar 

  40. Zhuo Z, Fang S, Yue M, Zhang Y, Feng J (2014) Kinetics absorption characteristics of ferrous glycinate in SD rats and its impact on the relevant transport protein. Biol Trace Elem Res 158(2):197–202

    Article  CAS  PubMed  Google Scholar 

  41. Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P, Borot N et al (2002) Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 51(5):648–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mena NP, Esparza A, Tapia V, Valdés P, Núñez MT (2008) Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol Gastrointest Liver Physiol 294(1):G192–G198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Doctoral Fund of the Ministry of Education of China (No. 20102325110005), and we thank Guangzhou Tanke Technology Company (Guangzhou, China) for providing Fe glycine chelate in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y.F., Jiang, M.M., Sun, J. et al. Studies on Different Iron Source Absorption by in Situ Ligated Intestinal Loops of Broilers. Biol Trace Elem Res 163, 154–161 (2015). https://doi.org/10.1007/s12011-014-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0179-1

Keywords

Navigation