Abstract
The present study determined the effects of prenatal and postnatal exposure to Wi-Fi (2.45 GHz)-induced electromagnetic radiation (EMR) on tooth and surrounding tissue development as well as the element levels in growing rats. Twenty-four rats and their offspring were equally divided into two separate groups identified as experiment and control. The experiment group was exposed to 2.45 GHz EMR for 2 h/day during the periods of pregnancy (21 days) and lactation (21 days). The offspring of these dams were also exposed to EMR up to decapitation. The control group was exposed to cage stress for 2 h per day using the same protocol established for the experimental group. On the 7th, 14th, and 21st days after birth, 8 male offspring rats from each of the two groups were decapitated, and the jaws were taken for histological and immunohistochemical examination. Caspase-3 (1/50 dilution) was used in the immunohistochemical examination for apoptotic activity. On the last day of the experiment, the rats’ incisors were also collected. In samples that were histologically and immunohistochemically examined, there was an increase in apoptosis and caspase-3 in both the control and the Wi-Fi groups during the development of the teeth. However, no significant difference was observed between the two groups in terms of development and apoptotic activity. Results from the elemental analysis showed that iron and strontium concentrations were increased in the Wi-Fi group, whereas boron, copper, and zinc concentrations were decreased. There were no statistically significant differences in calcium, cadmium, potassium, magnesium, sodium, or phosphorus values between the groups. Histological and immunohistochemical examinations between the experimental and control groups showed that exposure to 2.45 GHz EMR for 2 h per day does not interfere with the development of teeth and surrounding tissues. However, there were alterations in the elemental composition of the teeth, especially affecting such oxidative stress-related elements as copper, zinc, and iron, suggesting that short-term exposure to Wi-Fi-induced EMR may cause an imbalance in the oxidative stress condition in the teeth of growing rats.
This is a preview of subscription content, access via your institution.







References
Naziroglu M, Gumral N (2009) Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 85(8):680–689
Murphy JC, Kaden DA, Warren J, Sivak A (1993) International Commission for Protection Against Environmental Mutagens and Carcinogens. Power frequency electric and magnetic fields: a review of genetic toxicology. Mutat Res 296(3):221–240
Naziroglu M, Yuksel M, Kose SA, Ozkaya MO (2013) Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males. J Membr Biol 246(12):869–875
Fukui Y, Hoshino K, Inouye M, Kameyama Y (1992) Effects of hyperthermia induced by microwave irradiation on brain development in mice. J Radiat Res 33(1):1–10
Paulraj R, Behari J (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 596(1–2):76–80. doi:10.1016/j.mrfmmm.2005.12.006
Simon D, Daubos A, Pain C, Fitoussi R, Vie K, Taieb A, de Benetti L, Cario-Andre M (2013) Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis. Int J Cosmet Sci 35:27–34
Santini MT, Rainaldi G, Indovina PL (2009) Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol 85(4):294–313
Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: Electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 2:56–69
Naziroglu M, Tokat S, Demirci S (2012) Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J Recept Signal Transduct Res 32(6):290–297
Kamiya N, Shafer S, Oxendine I, Mortlock DP, Chandler RL, Oxburgh L, Kim HK (2013) Acute BMP2 upregulation following induction of ischemic osteonecrosis in immature femoral head. Bone 53(1):239–247
Black SM, DeVol JM, Wedgwood S (2008) Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. Am J Phys Cell Physiol 294(1):C345–354
Galli C, Passeri G, Macaluso GM (2011) FoxOs, Wnts and oxidative stress-induced bone loss: new players in the periodontitis arena? J Periodontal Res 46(4):397–406
Thesleff I, Vaahtokari A, Partanen AM (1995) Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 39(1):35–50
Heasman J (2006) Patterning the early Xenopus embryo. Development 133(7):1205–1217
Burchard JF, Nguyen DH, Block E (1999) Macro- and trace element concentrations in blood plasma and cerebrospinal fluid of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 20(6):358–364
Adiguzel O, Dasdag S, Akdag MZ, Erdogan S, Kaya S, Yavuz I, Kaya FA (2008) Effect of Mobile Phones on Trace Elements Content in Rat Biotechnol & Biotechnol EqTeeth 22(4):998–1001
Kaya S, Akdag MZ, Yavuz I, Celik MS, Adiguzel O, Tumen EC, Kaya FA, Erdogan S, Akpolat V (2009) ELF Electromagnetic Field and Strontium Ranilate Influences on the Trace Element Content of Rat Teeth. J Anim Vet Adv 8(2):322–327
Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92(1):19–29
Pindborg JJ (1982) Aetiology of developmental enamel defects not related to fluorosis. Int Dent J 32(2):123–134
Alaluusua S, Lukinmaa PL, Koskimies M, Pirinen S, Holtta P, Kallio M, Holttinen T, Salmenpera L (1996) Developmental dental defects associated with long breast feeding. Eur J Oral Sci 104(5–6):493–497
Alaluusua S, Lukinmaa PL, Torppa J, Tuomisto J, Vartiainen T (1999) Developing teeth as biomarker of dioxin exposure. Lancet 353(9148):206
Lukinmaa PL, Sahlberg C, Leppaniemi A, Partanen AM, Kovero O, Pohjanvirta R, Tuomisto J, Alaluusua S (2001) Arrest of rat molar tooth development by lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 173(1):38–47
Appleton J, Lee KM, Sawicka Kapusta K, Damek M, Cooke M (2000) The heavy metal content of the teeth of the bank vole (Clethrionomys glareolus) as an exposure marker of environmental pollution in Poland. Environ Pollut 110(3):441–449
Curzon ME, Crocker DC (1978) Relationships of trace elements in human tooth enamel to dental caries. Arch Oral Biol 23(8):647–653
Krewski D, Byus CV, Glickman BW, Lotz WG, Mandeville R, McBride ML, Prato FS, Weaver DF (2001) Potential health risks of radiofrequency fields from wireless telecommunication devices. J Toxicol Environ Health B Crit Rev 4(1):1–143
Tvinnereim HM, Eide R, Riise T, Fosse G, Wesenberg GR (1999) Zinc in primary teeth from children in Norway. Sci Total Environ 226(2–3):201–212
Faraone A, Ballen M, Bit-Babik G, Gressner A, Kanda M, Swicord M, Chou C (2004) RF dosimetry for the ferriswheel mouse exposure system Motorola Labs Final Report. August
Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470
Palumbo R, Brescia F, Capasso D, Sannino A, Sarti M, Capri M, Grassilli E, Scarfi MR (2008) Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes. Radiat Res 170(3):327–334
Kumar S, Kesari KK, Behari J (2011) Influence of microwave exposure on fertility of male rats. Fertil Steril 95(4):1500–1502
Misa Agustino MJ, Leiro JM, Jorge Mora MT, Rodriguez-Gonzalez JA, Jorge Barreiro FJ, Ares-Pena FJ, Lopez-Martin E (2012) Electromagnetic fields at 2.45 GHz trigger changes in heat shock proteins 90 and 70 without altering apoptotic activity in rat thyroid gland. Biol Open 1(9):831–838
Atar M, Atar-Zwillenberg DR, Verry P, Spornitz UM (2004) Defective enamel ultrastructure in diabetic rodents. Int J Paediatr Dent Br Paedodontic Soc Int Assoc Dent Child 14(4):301–307
Featherstone JD, Nelson DG, McLean JD (1981) An electron microscope study of modifications to defect regions in dental enamel and synthetic apatites. Caries Res 15(4):278–288
Anttila A (1986) Proton-induced X-ray emission analysis of Zn, Sr and Pb in human deciduous tooth enamel and its relationship to dental caries scores. Arch Oral Biol 31(11):723–726
Maridonneau I, Braquet P, Garay RP (1983) Na+ and K+ transport damage induced by oxygen free radicals in human red cell membranes. J Biol Chem 258(5):3107–3113
Fatmi W, Kechrid Z, Naziroglu M, Flores-Arce M (2013) Selenium supplementation modulates zinc levels and antioxidant values in blood and tissues of diabetic rats fed zinc-deficient diet. Biol Trace Elem Res 152(2):243–250
Pal A, Singh A, Nag TC, Chattopadhyay P, Mathur R, Jain S (2013) Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection. Int J Nanomedicine 8:2259–2272
Naziroglu M, Yurekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 33(5):589–599
Thomas C, Mackey MM, Diaz AA, Cox DP (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep Commun Free Radic Res 14(3):102–108
Hunt CD (1994) The biochemical effects of physiologic amounts of dietary boron in animal nutrition models. Environ Health Perspect 102(Suppl 7):35–43
Ince S, Kucukkurt I, Demirel HH, Acaroz DA, Akbel E, Cigerci IH (2014) Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere 108:197–204
Acknowledgments
The study was supported by Scientific Research Project Unit of Suleyman Demirel University (BAP-3334-D2-12). The abstract of the study was submitted to the 5th International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP Channels, 9–12 September 2014, Isparta Turkey (http://www.cmos.org.tr/2014/).
Authors’ Roles
ZZÇ, ZK and MN formulated the present hypothesis and MN was also responsible for writing the report. ÖÖ was responsible for pathological analyses. ZZÇ and ZK were repsonsible for experimental procedure of the study. ZK made critical revisions to the manuscript.
Conflict of Interest
None of the authors have any conflicts to disclose. All authors have approved the final manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Çiftçi, Z.Z., Kırzıoğlu, Z., Nazıroğlu, M. et al. Effects of Prenatal and Postnatal Exposure of Wi-Fi on Development of Teeth and Changes in Teeth Element Concentration in Rats. Biol Trace Elem Res 163, 193–201 (2015). https://doi.org/10.1007/s12011-014-0175-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-014-0175-5