Skip to main content
Log in

Combined Effects of Lanthanum(III) and Elevated Ultraviolet-B Radiation on Root Nitrogen Nutrient in Soybean Seedlings

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L−1 La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L−1 La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L−1 La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L−1 La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L−1 La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodewald UC, Chevalier B, Pottgen R (2007) Rare earth-transition metal-magnesium compounds—an overview. J Solid State Chem 180:1720–1736

    Article  CAS  Google Scholar 

  2. Molander GA, Romero JAC (2002) Lanthanocene catalysts in selective organic synthesis. Chem Rev 102:2161–2185

    Article  CAS  PubMed  Google Scholar 

  3. Minowa T (2008) Rare earth magnets: conservation of energy and the environment. Resour Geol 58:414–422

    Article  CAS  Google Scholar 

  4. Du XY, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45:4096–4101

    Article  CAS  PubMed  Google Scholar 

  5. Gai SL, Yang GX, Li XB, Li CX, Dai YL, He F, Yang PP (2012) Facile synthesis and up-conversion properties of monodisperse rare earth fluoride nanocrystals. Dalton T 41:11716–11724

    Article  CAS  Google Scholar 

  6. Hinton BRW, Behrouzvaziri M, Forsyth M, Gupta RK, Seter M, Bushell PG (2012) The inhibition of hydrogen embrittlement in SAE 4340 steel in an aqueous environment with the rare earth compound lanthanum 4 hydroxy cinnamate. Metall Mater Trans A 43:2251–2259

    Article  CAS  Google Scholar 

  7. Rosalbino F, Carlini R, Soggia F, Zanicchi G, Scavino G (2012) Influence of rare earth metals addition on the corrosion behaviour of copper in alkaline environment. Corros Sci 58:139–144

    Article  CAS  Google Scholar 

  8. Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earths 31:933–943

    Article  CAS  Google Scholar 

  9. Hopkins BS, Quill LL (1933) The use of non-aqueous solvents in the study of the rare earth group. Proc Natl Acad Sci U S A 19:64–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Potts MJ, Lee CW, Cadieux JR (1974) Rare earth element composition of atmospheric particulates. Environ Sci Technol 8:585–587

    Article  CAS  Google Scholar 

  11. Wang ZJ, Liu DF, Lu P, Wang CX (2001) Accumulation of rare earth elements in corn after agricultural application. J Environ Qual 30:37–45

    Article  CAS  PubMed  Google Scholar 

  12. Neal C (2005) Lanthanum, cerium, praseodymium and yttrium in waters in an upland acidic and acid sensitive environment, mid-Wales. Hydrol Earth Syst Sc 9:645–656

    Article  CAS  Google Scholar 

  13. Hu Z, Haneklaus S, Sparovek G, Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plant 37:1381–1420

    Article  CAS  Google Scholar 

  14. Suzuki Y, Hikida S, Furuta N (2011) Cycling of rare earth elements in the atmosphere in central Tokyo. J Environ Monitor 13:3420–3428

    Article  CAS  Google Scholar 

  15. Liang T, Li KX, Wang LQ (2014) State of rare earth elements in different environmental components in mining areas of China. Environ Monit Assess 186:1499–1513

    Article  CAS  PubMed  Google Scholar 

  16. Xiong BK (1995) Application of rare earth in Chinese agriculture and their perspective development. Brown Prior Anderson Pty Ltd, Canberra, pp 5–9

    Google Scholar 

  17. Diatloff E, Asher CJ, Smith FW (1996) Concentrations of rare earth elements in some Australian soils. Soil Res 34:735–747

    Article  CAS  Google Scholar 

  18. Tyler G (2004) Rare earth elements in soil and plant systems—a review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  19. Loell M, Reiher W, Felix-Henningsen P (2011) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nutrition Soil Sci 174:644–654

    Article  CAS  Google Scholar 

  20. Sadeghi M, Petrosino P, Ladenberger A, Albanese S, Andersson M, Morris G, Lima A, De Vivo B, Gemas PT (2013) Ce, La and Y concentrations in agricultural and grazing-land soils of Europe. J Geochemical Exploration 133:202–213

    Article  CAS  Google Scholar 

  21. Suzuki Y, Suzuki T, Furuta N (2010) Determination of rare earth elements (REEs) in airborne particulate matter (APM) collected in Tokyo, Japan, and a positive anomaly of europium and terbium. Anal Sci 26:929–935

    Article  CAS  PubMed  Google Scholar 

  22. Kulaksız S, Bau M (2011) Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int 37:973–979

    Article  PubMed  Google Scholar 

  23. Hu ZY, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  24. Redling K (2006) Rare earth elements in agriculture with emphasis on animal husbandry. Ludwig-Maximilians-Universität München, LMU München, Dissertation

    Google Scholar 

  25. Karstensen KH, Parlikar UV, Ahuja D, Sharma S, Chakraborty MA, Maurya HP, Mallik M, Gupta PK, Kamyotra JS, Bala SS, Kapadia BV (2014) Destruction of concentrated chlorofluorocarbons in India demonstrates an effective option to simultaneously curb climate change and ozone depletion. Environ Sci Policy 38:237–244

    Article  CAS  Google Scholar 

  26. Erickson DJ, Zepp RG, Atlas E (2000) Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases. Chemosphere 2:137–149

    CAS  Google Scholar 

  27. Andrady AL, Aucamp PJ, Austin AT, Bais AF, Ballare CL, Bjorn LO, Bornman JF, Caldwell M, Cullen AP, Erickson DJ, de Gruijl FR, Hader DP, Helbling W, Ilyas M, Longstreth J, Lucas R, McKenzie RL, Madronich S, Norval M, Paul ND, Redhwi HH, Robinson S, Shao M, Solomon KR, Sulzberger B, Takizawa Y, Tang XY, Torikai A, van der Leun JC, Williamson CE, Wilson SR, Worrest RC, Zepp RG (2012) Environmental effects of ozone depletion and its interactions with climate change: progress report, 2011. Photoch Photobio Sci 11:13–27

    Article  CAS  Google Scholar 

  28. Ramacher B, Rudolph J, Koppmann R (1999) Hydrocarbon measurements during tropospheric ozone depletion events: evidence for halogen atom chemistry. J Geophy Res-Atmos 104:3633–3653

    Article  CAS  Google Scholar 

  29. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  CAS  Google Scholar 

  30. McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochim Photobiol Sci 10:182–198

    Article  CAS  Google Scholar 

  31. Rowland FS (2006) Stratospheric ozone depletion. Philos Trans Royal Soc B-Biol Sci 361:769–790

    Article  CAS  Google Scholar 

  32. Velders GJM, Andersen SO, Daniel JS, Fahey DW, McFarland M (2007) The importance of the Montreal Protocol in protecting climate. Proc Natl Acad Sci U S A 104:4814–4819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. UNE, Programme (2002) Executive summary. Final of UNEP/WMO scientific assessment of ozone depletion: 2002. Prepared by the scientific assessment panel of the Montreal Protocol on substances that deplete the ozone layer. UNEP, Nairobi. (Released 23 August 2002).

  34. Huang GR, Wang LH, Zhou Q (2014) Combined effects of lanthanum (III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings. Environ Sci Pollut Res 21:3621–3633

    Article  CAS  Google Scholar 

  35. Wang LH, Huang XH, Zhou Q (2009) Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol Trace Elem Res 128:82–93

    Article  CAS  PubMed  Google Scholar 

  36. Rathore D, Agrawal S, Singh A (2003) Influence of supplemental UV-B radiation and mineral nutrients on biomass, pigments and yield of two cultivars of wheat (Triticum aestivum L.). Int J Biotron 32:1–15

    Google Scholar 

  37. Caldwell MM (1971) Solar UV irradiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. Academic Press, New York, l31–177

  38. Peng Q, Zhou Q (2010) Effects of enhanced UV-B radiation on the distribution of mineral elements in soybean (Glycine max L.) seedlings. Chemosphere 78:859–863

    Article  CAS  PubMed  Google Scholar 

  39. Pang X, Li DC, Peng A (2002) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res 9:143–148

    Article  CAS  Google Scholar 

  40. Liang CJ, Huang XH, Zhou Q (2006) Effect of cerium on photosynthetic characteristics of soybean seedling exposed to supplementary ultraviolet-B radiation. J Environ Sci-China 18:1147–1151

    Article  CAS  PubMed  Google Scholar 

  41. Liang CJ, Zhang GS, Zhou Q (2011) Effect of cerium on photosynthetic pigments and photochemical reaction activity in soybean seedling under ultraviolet-B radiation stress. Biol Trace Elem Res 142:796–806

    Article  CAS  PubMed  Google Scholar 

  42. Peng Q, Zhou Q (2009) The endogenous hormones in soybean seedlings under the joint actions of rare earth element La (III) and ultraviolet-B stress. Biol Trace Elem Res 132:270–277

    Article  CAS  PubMed  Google Scholar 

  43. Yao X, Chu J, He X, Ba C (2011) Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation. J Plant Physiol 58:283–289

    CAS  Google Scholar 

  44. Yoo YK (2009) Effects of plant growth regulators and several conditions on rooting and shoot growth in rhizome cutting of Acorus gramineus. J Hortic Sci-Korean 27:560–566

    Google Scholar 

  45. Van Wijk MT (2011) Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Global Ecol Biogeogr 20:331–342

    Article  Google Scholar 

  46. Dubey RS, Pessarakli M (2002) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Pessarakli M (ed) Handbook of environmental toxicology and chemistry. Ios Press, Amsterdam, pp 2982–2986

    Google Scholar 

  47. Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant amino acids. Biochemistry and Biotechnology. Marcel Dekker, New York, pp 1–47

    Google Scholar 

  48. Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140:444–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sánchez E, Rivero RM, Ruiz JM, Romero L (2004) Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Sci Hortic 99:237–248

    Article  Google Scholar 

  50. Yang Q, Li YL, Wang LH, Zhou Q, Huang XH (2014) Effect of lanthanum (III) on the production of ethylene and reactive oxygen species in soybean seedlings exposed to the enhanced ultraviolet-B radiation. Ecotox Environ Safe 104:152–159

    Article  CAS  Google Scholar 

  51. Beda N, Nedospasov A (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide 13:93–97

    Article  CAS  PubMed  Google Scholar 

  52. Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campíns-Falcó P (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. Trends Anal Chem 25:282–290

    Article  CAS  Google Scholar 

  53. Ida S, Mori E, Morita Y (1974) Purification, stabilization and characterization of nitrite reductase from barley roots. Planta 121:213–224

    Article  CAS  PubMed  Google Scholar 

  54. Scholl RL, Harper JE, Hageman RH (1974) Improvements of the nitrite color development in assays of nitrate reductase by phenazine methosulfate and zinc acetate. Plant Physiol 53:825–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Aslam M, Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol 91:1152–1156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Joy KW, Hageman RH (1966) The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Biochem J 100:263–273

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Oaks A, Stulen I, Jones K, Winspear MJ, Misra S, Boesel IL (1980) Enzymes of nitrogen assimilation in maize roots. Planta 148:477–484

    Article  CAS  PubMed  Google Scholar 

  58. Singh RP, Srivastava HS (1986) Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol Plantarum 66:413–416

    Article  CAS  Google Scholar 

  59. Loulakakis CA, Roubelakis-Angelakis KA (1990) Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of the major leaf isoenzyme. J Exp Bot 41:1223–1230

    Article  CAS  Google Scholar 

  60. Huang GR, Wang LH, Zhou Q (2013) Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation. Biol Trace Elem Res 151:105–112

    Article  CAS  PubMed  Google Scholar 

  61. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  62. Mokhele B, Zhan XJ, Yang GZ, Zhang XL (2012) Review: nitrogen assimilation in crop plants and its affecting factors. Can J Plant Sci 92:399–405

    Article  CAS  Google Scholar 

  63. Beevers L, Hageman RH (1969) Nitrate reduction in higher plants. Annu Rev Plant Physiol Plant Mol Biol 20:495–522

    Article  CAS  Google Scholar 

  64. Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154–1162

    Article  CAS  PubMed  Google Scholar 

  65. Andriunas FA, Zhang HM, Xia X, Offler CE, McCurdy DW, Patrick JW (2012) Reactive oxygen species form part of a regulatory pathway initiating trans-differentiation of epidermal transfer cells in Vicia faba cotyledons. J Exp Bot 63:3617–3629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  PubMed  Google Scholar 

  67. Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol 49:229–239

    Article  Google Scholar 

  68. Beevers L, Schrader LE, Flesher D, Hageman RH (1965) The role of light and nitrate in the induction of nitrate reductase in radish cotyledons and maize seedlings. Plant Physiol 40:691–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zheng L, Su MR, Wu X, Liu C, Qu CX, Chen L, Huang H, Liu XQ, Hong FS (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  CAS  Google Scholar 

  70. Pang X, Wang DH, Xing XY, Peng A, Zhang FS, Li CJ (2002) Effect of La3+ on the activities of antioxidant enzymes in wheat seedlings under lead stress in solution culture. Chemosphere 47:1033–1039

    Article  CAS  PubMed  Google Scholar 

  71. He Y, Xue L (2005) Biological effects of rare earth elements and their action mechanisms. J Appl Ecol 16:1983–1989

    CAS  Google Scholar 

  72. Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot-London 101:971–982

    Article  CAS  Google Scholar 

  73. d’Aquino L, De Pinto MC, Nardi L, Morgana M, Tommasi F (2009) Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75:900–905

    Article  PubMed  Google Scholar 

  74. Withers LA, Cocking EC (1972) Fine-structural studies on spontaneous and induced fusion of higher plant protoplasts. J Cell Sci 11:59–75

    CAS  PubMed  Google Scholar 

  75. Liu J, Wu YH, Yan JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biology 51:11–19

    Article  CAS  Google Scholar 

  76. Sun H, Wang LH, Zhou Q, Huang XH (2013) Effects of bisphenol A on ammonium assimilation in soybean roots. Environ Sci Pollut Res 20:8484–8490

    Article  CAS  Google Scholar 

  77. Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53:905–916

    Article  CAS  PubMed  Google Scholar 

  78. Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482

    Article  CAS  PubMed  Google Scholar 

  79. Xie ZS, Forney CF, Xu WP, Wang SP (2009) Effects of root restriction on ultrastructure of phloem tissues in grape berry. Hortscience 44:1334–1339

    Google Scholar 

  80. Xiong HY, Li YS, Li LJ (2006) A unique form of cell death occurring in meristematic root tips of completely submerged maize seedlings. Plant Sci 171:624–631

    Article  CAS  Google Scholar 

  81. Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  82. Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  83. Chiraz C, Houda G, Habib GM (2003) Nitrogen metabolism in tomato plants under cadmium stress. J Plant Nutr 26:1617–1634

    Article  CAS  Google Scholar 

  84. Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (31170477), the Natural Science Foundation of Jiangsu Province (BK2011160), and the Fundamental Research Funds for the Central Universities and the Doctor Candidate Foundation of Jiangnan University (No. JUDCF11037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Xiaohua Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Wang, L., Sun, Z. et al. Combined Effects of Lanthanum(III) and Elevated Ultraviolet-B Radiation on Root Nitrogen Nutrient in Soybean Seedlings. Biol Trace Elem Res 163, 224–234 (2015). https://doi.org/10.1007/s12011-014-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0174-6

Keywords

Navigation