Skip to main content
Log in

Trace Element Inhibition of Phytase Activity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37(7):727–739

    Article  CAS  Google Scholar 

  2. Kumar V, Sinha AK, Makkar HP, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition. J Anim Physiol Anim Nutr 96(3):335–364

    Article  CAS  Google Scholar 

  3. Kim Y-O, Kim H-K, Bae K-S, Yu J-H, Oh T-K (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzym Microb Technol 22(1):2–7

    Article  CAS  Google Scholar 

  4. Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R (2011) Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. J Inorg Biochecm 105(7):1000–1007

    Article  CAS  Google Scholar 

  5. Persson H, Turk M, Nyman M, Sandberg AS (1998) Binding of Cu2+, Zn2+ and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates. J Agric Food Chem 46(8):3194–3200

    Article  CAS  Google Scholar 

  6. Maenz DD, Engele-Schaan CM, Newkirk RW, Classen HL (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim Feed Sci Technol 81(3–4):177–192

    Article  CAS  Google Scholar 

  7. Rimbach G, Brandt K, Most E, Pallauf J (1995) Supplemental phytic acid and microbial phytase change zinc bioavailability and cadmium accumulation in growing rats. J Trace Elem Med Biol 9(2):117–122

    Article  CAS  PubMed  Google Scholar 

  8. Mallin MA, Cahoon LB (2003) Industrialized animal production—a major source of nutrient and microbial pollution to aquatic ecosystems. Popul Environ 24(5):369–385

    Article  Google Scholar 

  9. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang University-Science B 9(3):165–191

    Article  CAS  Google Scholar 

  10. Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ (2013) Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci 1(1):283–309

    Article  PubMed  Google Scholar 

  11. Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A (2006) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97(3):506–511

    Article  CAS  PubMed  Google Scholar 

  12. Adeola O, Cowieson AJ (2011) Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89(10):3189–3218

    Article  CAS  PubMed  Google Scholar 

  13. Ullah AH, Dischinger HC Jr (1993) Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. Biochem Biophys Res Commun 192(2):747–753

    Article  CAS  PubMed  Google Scholar 

  14. Ramachandran S, Roopesh K, Nampoothiri KM, Szakacs G, Pandey A (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochem 40(5):1749–1754

    Article  CAS  Google Scholar 

  15. Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110(3):313–322

    Article  CAS  PubMed  Google Scholar 

  16. Paripatananont T, Lovell RT (1997) Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. J World Aquacult Soc 28(1):62–67

    Article  Google Scholar 

  17. Veum TL, Carlson MS, Wu CW, Bollinger DW, Ellersieck MR (2004) Copper proteinate in weanling pig diets for enhancing growth performance and reducing fecal copper excretion compared with copper sulfate. J Anim Sci 82(4):1062–1070

    CAS  PubMed  Google Scholar 

  18. Mondal MK, Das TK, Biswas P, Samanta CC, Bairagi B (2007) Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Anim Feed Sci Technol 139(3–4):212–233

    Article  CAS  Google Scholar 

  19. Garg AK, Mudgal V, Dass RS (2008) Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim Feed Sci Technol 144(1–2):82–96

    Article  CAS  Google Scholar 

  20. AAFCO (1998) Official Publication of the Association of American Feed Control Officials Incorporated. In: Bachman PM (ed). pp 237–238.

  21. Shah BG (1981) Chelating agents and bioavailability of minerals. Nutr Res 1(6):617–622

    Article  CAS  Google Scholar 

  22. Byrne LA, Hynes MJ, Connolly CD, Murphy RA (2011) Analytical determination of apparent stability constants using a copper ion selective electrode. J Inorg Biochem 105(12):1656–1661

    Article  CAS  PubMed  Google Scholar 

  23. Radcliffe JS, Aldridge BE, Saddoris KL (2007) Understanding organic mineral uptake mechanisms: experiments with Bioplex® Cu. (14/02/14).

  24. Guo R, Henry PR, Holwerda RA, Cao J, Littell RC, Miles RD, Ammerman CB (2001) Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. J Anim Sci 79(5):1132–1141

    CAS  PubMed  Google Scholar 

  25. Näsi JM, Helander EH, Partanen KH (1995) Availability for growing pigs of minerals and protein of a high phytate barley-rapeseed meal diet treated with Aspergillus niger phytase or soaked with whey. Anim Feed Sci Technol 56(1–2):83–98

    Article  Google Scholar 

  26. Revy PS, Jondreville C, Dourmad JY, Nys Y (2004) Effect of zinc supplemented as either an organic or an inorganic source and of microbial phytase on zinc and other minerals utilisation by weanling pigs. Anim Feed Sci Technol 116(1–2):93–112

    Article  CAS  Google Scholar 

  27. Jondreville C, Lescoat P, Magnin M, Feuerstein D, Gruenberg B, Nys Y (2007) Sparing effect of microbial phytase on zinc supplementation in maize–soya-bean meal diets for chickens. Anim: Int J Anim Biosci 1(6):804–811

    Article  CAS  Google Scholar 

  28. Schlegel P, Nys Y, Jondreville C (2010) Zinc availability and digestive zinc solubility in piglets and broilers fed diets varying in their phytate contents, phytase activity and supplemented zinc source. Anim: Int J Anim Biosci 4(2):200–209

    Article  CAS  Google Scholar 

  29. Engelen AJ, van der Heeft FC, Randsdorp PH, Smit EL (1994) Simple and rapid determination of phytase activity. J AOAC Int 77(3):760–764

    CAS  PubMed  Google Scholar 

  30. Rao D, Rao KV, Reddy TP, Reddy VD (2009) Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit Rev Biotechnol 29(2):182–198

    Article  CAS  PubMed  Google Scholar 

  31. Wyss M, Brugger R, Kroenberger A, Remy R, Fimbel R, Osterhelt G, Lehmann M, van Loon A (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65(2):367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Mullaney EJ, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312(1):179–184

    Article  CAS  PubMed  Google Scholar 

  33. George TS, Simpson RJ, Gregory PJ, Richardson AE (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39(3):793–803

    Article  CAS  Google Scholar 

  34. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303(1):107–113

    Article  CAS  PubMed  Google Scholar 

  35. Greiner R, Haller E, Konietzny U, Jany K-D (1997) Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys 341(2):201–206

    Article  CAS  PubMed  Google Scholar 

  36. Dvorakova J, Volfova O, Kopecky J (1997) Characterization of phytase produced by Aspergillus niger. Folia Microbiologica 42(4):349–352

    Article  CAS  PubMed  Google Scholar 

  37. Greiner R, da Silva LG, Couri S (2009) Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9. Braz J Microbiol: [Publ Braz Soc Microbiol] 40(4):795–807

    Article  CAS  Google Scholar 

  38. Greiner R, Farouk A-E (2007) Purification and characterization of a bacterial phytase whose properties make it exceptionally useful as a feed supplement. Protein J 26(7):467–474

    Article  CAS  PubMed  Google Scholar 

  39. Ejechi B (2003) Immobilization of Cu(II) and Cr(IV) in basidiomycete-colonized sawdust. World J Microbiol Biotechnol 19(2):135–137

    Article  CAS  Google Scholar 

  40. Javaid A (2012) Biosorption of electroplating heavy metals by some basidiomycetes. Mycopath 6(1 & 2)

  41. Li S, Luo X, Liu B, Crenshaw TD, Kuang X, Shao G, Yu S (2004) Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. J Anim Sci 82(8):2352–2363

    CAS  PubMed  Google Scholar 

  42. Cao J, Henry PR, Guo R, Holwerda RA, Toth JP, Littell RC, Miles RD, Ammerman CB (2000) Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J Anim Sci 78(8):2039–2054

    CAS  PubMed  Google Scholar 

  43. Pang Y, Applegate TJ (2006) Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. J Agric Food Chem 54(5):1792–1796

    Article  CAS  PubMed  Google Scholar 

  44. Nutrient requirements of poultry: ninth revised edition, 1994 (1994). The National Academies Press.

  45. Nutrient requirements of swine: 10th revised edition (1998). The National Academies Press.

Download references

Acknowledgments

The support, both financially and professionally, offered by Alltech is greatly appreciated.

Conflict of Interest

The authors declare that they have no conflict of interest.

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, T., Connolly, C. & Murphy, R. Trace Element Inhibition of Phytase Activity. Biol Trace Elem Res 163, 255–265 (2015). https://doi.org/10.1007/s12011-014-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0161-y

Keywords

Navigation