Skip to main content

Advertisement

Log in

Hair Mercury Association with Selenium, Serum Lipid Spectrum, and Gamma-Glutamyl Transferase Activity in Adults

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The primary objective of the research is to estimate the dependence between hair mercury content, hair selenium, mercury-to-selenium ratio, serum lipid spectrum, and gamma-glutamyl transferase (GGT) activity in 63 adults (40 men and 23 women). Serum triglyceride (TG) concentration in the high-mercury group significantly exceeded the values obtained for low- and medium-mercury groups by 72 and 42 %, respectively. Serum GGT activity in the examinees from high-Hg group significantly exceeded the values of the first and the second groups by 75 and 28 %, respectively. Statistical analysis of the male sample revealed similar dependences. Surprisingly, no significant changes in the parameters analyzed were detected in the female sample. In all analyzed samples, hair mercury was not associated with hair selenium concentrations. Significant correlation between hair mercury content and serum TG concentration (r = 0.531) and GGT activity (r = 0.524) in the general sample of the examinees was detected. The respective correlations were observed in the male sample. Hair mercury-to-selenium ratios significantly correlated with body weight (r = 0.310), body mass index (r = 0.250), serum TG (r = 0.389), atherogenic index (r = 0.257), and GGT activity (r = 0.393). The same correlations were observed in the male sample. Hg/Se ratio in women did not correlate with the analyzed parameters. Generally, the results of the current study show the following: (1) hair mercury is associated with serum TG concentration and GGT activity in men, (2) hair selenium content is not related to hair mercury concentration, and (3) mercury-to-selenium ratio correlates with lipid spectrum parameters and GGT activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175

    Article  CAS  PubMed  Google Scholar 

  2. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737

    Article  CAS  PubMed  Google Scholar 

  3. Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26(4):215–226

    Article  CAS  PubMed  Google Scholar 

  4. Haley BE (2005) Mercury toxicity: genetic susceptibility and synergistic effects. Med Veritas 2(2):535–542

    Article  Google Scholar 

  5. Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21(2):105–117

    Article  CAS  PubMed  Google Scholar 

  6. Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 229:1–18

    PubMed  Google Scholar 

  7. Farina M, Avila DS, da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62(5):575–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bártová J, Procházková J, Krátká Z, Benetková K, Venclíková Z, Sterzl I (2003) Dental amalgam as one of the risk factors in autoimmune diseases. Neuro Endocrinol Lett 24(1–2):65–67

    PubMed  Google Scholar 

  9. Havarinasab S, Björn E, Nielsen JB, Hultman P (2007) Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol Appl Pharmacol 221(1):21–28

    Article  CAS  PubMed  Google Scholar 

  10. Nyland JF, Fairweather D, Shirley DL, Davis SE, Rose NR, Silbergeld EK (2012) Low-dose inorganic mercury increases severity and frequency of chronic coxsackievirus-induced autoimmune myocarditis in mice. Toxicol Sci 125(1):134–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li SJ, Zhang SH, Chen HP, Zeng CH, Zheng CX, Li LS, Liu ZH (2010) Mercury-induced membranous nephropathy: clinical and pathological features. Clin J Am Soc Nephrol 5(3):439–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kobal AB, Flisar Z, Miklavcic V, Dizdarević T, Sesek-Briski A (2000) Renal function in miners intermittently exposed to elemental mercury vapour. Arh Hig Rada Toksikol 51(4):369–380

    CAS  PubMed  Google Scholar 

  13. Fowler BA, Whittaker MH, Elinder CG (2008) Mercury-induced renal effects. In: De Broe ME, Porter GA, Bennett WM, Deray G (eds) Clinical nephrotoxins, 3rd edn. Springer, New York, pp 811–826

    Chapter  Google Scholar 

  14. Virtanen JK, Rissanen TH, Voutilainen S, Tuomainen TP (2007) Mercury as a risk factor for cardiovascular diseases. J Nutr Biochem 18(2):75–85

    Article  CAS  PubMed  Google Scholar 

  15. Salonen JT, Seppänen K, Lakka TA, Salonen R, Kaplan GA (2000) Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis 148(2):265–273

    Article  CAS  PubMed  Google Scholar 

  16. Skoczyńska A, Poreba R, Steinmentz-Beck A, Martynowicz H, Affelska-Jercha A, Turczyn B, Wojakowska A, Jedrychowska I (2009) The dependence between urinary mercury concentration and carotid arterial intima-media thickness in workers occupationally exposed to mercury vapour. Int J Occup Med Environ Health 22(2):135–142

    PubMed  Google Scholar 

  17. Yoshizawa K, Rimm EB, Morris JS, Spate VL, Hsieh CC, Spiegelman D, Stampfer MJ, Willett WC (2002) Mercury and the risk of coronary heart disease in men. N Engl J Med 347(22):1755–1760

    Article  CAS  PubMed  Google Scholar 

  18. Sponder M, Fritzer-Szekeres M, Marculescu R, Mittlböck M, Uhl M, Köhler-Vallant B, Strametz-Juranek J (2014) Blood and urine levels of heavy metal pollutants in female and male patients with coronary artery disease. Vasc Health Risk Manag 10:311–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4(2B):593–599

    Article  CAS  PubMed  Google Scholar 

  20. Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E (2006) Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 84(4):762–773

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Raymond LJ, Ralston NV (2004) Mercury: selenium interactions and health implications. Seychelles Med Dent J 7(1):72–77

    Google Scholar 

  22. Zhang H, Fang J, Yao D, Wu Y, Ip C, Dong Y (1995) Urinary selenium excretion in workers with low exposure to mercury vapour. J Appl Toxicol 15(1):33–36

    Article  Google Scholar 

  23. Li YF, Dong Z, Chen C, Li B, Gao Y, Qu L, Wang T, Fu X, Zhao Y, Chai Z (2012) Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environ Sci Technol 46(20):11313–11318

    Article  CAS  PubMed  Google Scholar 

  24. Anke M, Risch M (1979) Haaranalyse und Spurenelementstatus. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  25. Luque-Garcia JL, Cabezas-Sanchez P, Anunciação DS, Camara C (2013) Analytical and bioanalytical approaches to unravel the selenium-mercury antagonism: a review. Anal Chim Acta 801:1–13

    Article  CAS  PubMed  Google Scholar 

  26. Hong D, Cho SH, Park SJ, Kim SY, Park SB (2013) Hair mercury level in smokers and its influence on blood pressure and lipid metabolism. Environ Toxicol Pharmacol 36(1):103–107

    Article  CAS  PubMed  Google Scholar 

  27. Taher M, Orouji H, Mokhtarian D (2000) Study of the changes in serum lipids following mercury intoxification. J Res Med Sci 5(S2):38–40

    Google Scholar 

  28. Bashandy SA, Alhazza IM, El-Desoky GE, Al-Othman ZA (2011) Hepatoprotective and hypolipidemic effects of Spirulina platensis in rats administered mercuric chloride. Afr J Pharm Pharmacol 5(2):175–182

    Article  Google Scholar 

  29. Meltzer HM, Mundal HH, Alexander J, Bibow K, Ydersbond TA (1994) Does dietary arsenic and mercury affect cutaneous bleeding time and blood lipids in humans? Biol Trace Elem Res 46(1–2):135–153

    Article  CAS  PubMed  Google Scholar 

  30. Dierickx PJ (1980) Urinary gamma-glutamyl transferase as a specific marker for mercury after heavy metal treatment of rats. Toxicol Lett 6(4–5):235–238

    Article  CAS  PubMed  Google Scholar 

  31. Emdin M, Pompella A, Paolicchi A (2005) Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: triggering oxidative stress within the plaque. Circulation 112(14):2078–2080

    Article  PubMed  Google Scholar 

  32. Lee DS, Evans JC, Robins SJ, Wilson PW, Albano I, Fox CS, Wang TJ, Benjamin EJ, D’Agostino RB, Vasan RS (2007) Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 27(1):127–133

    Article  CAS  PubMed  Google Scholar 

  33. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  34. Lee DH, Blomhoff R, Jacobs DR Jr (2004) Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38(6):535–539

    Article  CAS  PubMed  Google Scholar 

  35. Dudani S, Kalhan S, Dubey S, Sharma S, Raheja BS (2010) Rise in plasma triglycerides: an early marker of oxidative stress in urban Indians. J Clin Lipidol 4(3):202–203

    Article  Google Scholar 

  36. Al-Aubaidy HA, Jelinek HF (2014) Oxidative stress and triglycerides as predictors of subclinical atherosclerosis in prediabetes. Redox Rep 19(2):87–91

    Article  CAS  PubMed  Google Scholar 

  37. Gebre-Medhin M, Ewald U, Tuvemo T (1988) Serum selenium is related to low-density lipoproteins in healthy children but not in children with diabetes. Ups J Med Sci 93(1):57–62

    CAS  PubMed  Google Scholar 

  38. Xun P, Liu K, Morris JS, Daviglus ML, He K (2010) Longitudinal association between toenail selenium levels and measures of subclinical atherosclerosis: the CARDIA trace element study. Atherosclerosis 210(2):662–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The current research is supported by Russian Ministry of Education and Science within project No. 2014/258-544.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Additional information

Alexey A. Tinkov and Margarita G. Skalnaya contributed equally to the current research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinkov, A.A., Skalnaya, M.G., Demidov, V.A. et al. Hair Mercury Association with Selenium, Serum Lipid Spectrum, and Gamma-Glutamyl Transferase Activity in Adults. Biol Trace Elem Res 161, 255–262 (2014). https://doi.org/10.1007/s12011-014-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0124-3

Keywords

Navigation