Skip to main content

Advertisement

Log in

Selenium Action in Neuro-Oncology

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The trace element selenium and selenocysteine-carrying selenoproteins play a pivotal role in the brain. Beside the essential function during development and maintenance of brain action, selenium has also been associated with several neurological and neuro-oncological conditions. Reliable supply of selenium is important since selenium compounds can affect tumor microenvironment and neoangiogenesis in malignant gliomas (WHO grade III and IV [glioblastoma, GBM]) via induction of apoptosis and alteration of matrix metalloproteinases expression. Here, we summarize recent findings focusing on the anti-toxicity and cancer-preventive properties of selenium and their implication in current multimodal therapies including temozolomide (Temodal), cyclophosphamide (Endoxan), and cisplatin (DDP, Platiblastin, and Platinol). We shed light on unintended side effects in chemotherapy and the developments of novel combinatorial chemotherapeutics with selenium compounds. We found that selenium and selenium compounds have dual action profiles with direct anti-cancer and chemotherapy-intensifier effects as well as neuroprotective and cytoprotective agents. Current selenium trials and selenium supplementation with focus on neuro-oncology will be discussed with regard to low-adequate-to-high/toxic selenium status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brauer AU, Savaskan NE (2004) Molecular actions of selenium in the brain: Neuroprotective mechanisms of an essential trace element. Rev Neurosci 15(1):19–32

    PubMed  Google Scholar 

  2. Schweizer U, Brauer AU, Kohrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45(3):164–178

    CAS  PubMed  Google Scholar 

  3. Pillai R, Uyehara-Lock JH, Bellinger FP (2014) Selenium and selenoprotein function in brain disorders. IUBMB Life 66(4):229–239

    CAS  PubMed  Google Scholar 

  4. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ (2014) Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem 289(14):9662–9674

    CAS  PubMed  Google Scholar 

  5. Bleys J, Navas-Acien A, Guallar E (2008) Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168(4):404–410

    CAS  PubMed  Google Scholar 

  6. Ray AL, Semba RD, Walston J et al (2006) Low serum selenium and total carotenoids predict mortality among older women living in the community: the women's health and aging studies. J Nutr 136(1):172–176

    CAS  PubMed  Google Scholar 

  7. Carlson BA, Yoo MH, Shrimali RK et al (2010) Role of selenium-containing proteins in T-cell and macrophage function. Proc Nutr Soc 69(3):300–310

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hall JA, Vorachek WR, Stewart WC et al (2013) Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS One 8(12):e82572

    PubMed Central  PubMed  Google Scholar 

  9. Naziroglu M, Senol N, Ghazizadeh V, Yuruker V (2014) Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol 34(6):895–903

    CAS  PubMed  Google Scholar 

  10. Streicher KL, Sylte MJ, Johnson SE, Sordillo LM (2004) Thioredoxin reductase regulates angiogenesis by increasing endothelial cell-derived vascular endothelial growth factor. Nutr Cancer 50(2):221–231

    CAS  PubMed  Google Scholar 

  11. Kristal AR, Darke AK, Morris JS et al (2014) Baseline selenium status and effects of selenium and vitamin E supplementation on prostate cancer risk. J Natl Cancer Inst 106(3):djt456

    PubMed  Google Scholar 

  12. Clark LC, Combs GF Jr, Turnbull BW et al (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276(24):1957–1963

    CAS  PubMed  Google Scholar 

  13. Clark LC, Dalkin B, Krongrad A et al (1998) Decreased incidence of prostate cancer with selenium supplementation: Results of a double-blind cancer prevention trial. Br J Urol 81(5):730–734

    CAS  PubMed  Google Scholar 

  14. Duffield-Lillico AJ, Reid ME, Turnbull BW et al (2002) Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol Biomarkers Prev 11(7):630–639

    CAS  PubMed  Google Scholar 

  15. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    CAS  PubMed  Google Scholar 

  16. Ip C, Thompson HJ, Zhu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60(11):2882–2886

    CAS  PubMed  Google Scholar 

  17. Qi Y, Fu X, Xiong Z et al (2012) Methylseleninic acid enhances paclitaxel efficacy for the treatment of triple-negative breast cancer. PLoS One 7(2):e31539

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20(9):1657–1666

    CAS  PubMed  Google Scholar 

  19. Ganther HE (1971) Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry 10(22):4089–4098

    CAS  PubMed  Google Scholar 

  20. Husain K, Morris C, Whitworth C, Trammell GL, Rybak LP, Somani SM (1998) Protection by ebselen against cisplatin-induced nephrotoxicity: Antioxidant system. Mol Cell Biochem 178(1–2):127–133

    CAS  PubMed  Google Scholar 

  21. Itoh M, Suzuki KT (1997) Effects of dose on the methylation of selenium to monomethylselenol and trimethylselenonium ion in rats. Arch Toxicol 71(7):461–466

    CAS  PubMed  Google Scholar 

  22. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806

    CAS  PubMed  Google Scholar 

  23. Patterson BH, Zech LA (1992) Development of a model for selenite metabolism in humans. J Nutr 122(3 Suppl):709–714

    CAS  PubMed  Google Scholar 

  24. Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    CAS  PubMed  Google Scholar 

  25. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370(18):1756–1760

    CAS  PubMed  Google Scholar 

  26. Castellano S, Lobanov AV, Chapple C et al (2005) Diversity and functional plasticity of eukaryotic selenoproteins: Identification and characterization of the SelJ family. Proc Natl Acad Sci U S A 102(45):16188–16193

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Savaskan NE, Borchert A, Brauer AU, Kuhn H (2007) Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: Specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 43(2):191–201

    CAS  PubMed  Google Scholar 

  28. Savaskan NE, Ufer C, Kuhn H, Borchert A (2007) Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function. Biol Chem 388(10):1007–1017

    CAS  PubMed  Google Scholar 

  29. Ufer C, Wang CC, Fahling M et al (2008) Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev 22(13):1838–1850

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184(3):455–465

    CAS  PubMed  Google Scholar 

  31. Battin EE, Brumaghim JL (2009) Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55(1):1–23

    CAS  PubMed  Google Scholar 

  32. Uden PC, Bird SM, Kotrebai M et al (1998) Analytical selenoamino acid studies by chromatography with interfaced atomic mass spectrometry and atomic emission spectral detection. Fresenius J Anal Chem 362(5):447–456

    CAS  Google Scholar 

  33. Trepanier G, Furling D, Puymirat J, Mirault ME (1996) Immunocytochemical localization of seleno-glutathione peroxidase in the adult mouse brain. Neuroscience 75(1):231–243

    CAS  PubMed  Google Scholar 

  34. Zhang Y, Zhou Y, Schweizer U et al (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283(4):2427–2438

    CAS  PubMed  Google Scholar 

  35. Hill KE, Zhou J, McMahan WJ et al (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278(16):13640–13646

    CAS  PubMed  Google Scholar 

  36. Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M, Kohrle J (2003) Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 370(Pt 2):397–402

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Saijoh K, Saito N, Lee MJ, Fujii M, Kobayashi T, Sumino K (1995) Molecular cloning of cDNA encoding a bovine selenoprotein P-like protein containing 12 selenocysteines and a (His-Pro) rich domain insertion, and its regional expression. Brain Res Mol Brain Res 30(2):301–311

    CAS  PubMed  Google Scholar 

  38. Yan J, Barrett JN (1998) Purification from bovine serum of a survival-promoting factor for cultured central neurons and its identification as selenoprotein-P. J Neurosci 18(21):8682–8691

    CAS  PubMed  Google Scholar 

  39. Scharpf M, Schweizer U, Arzberger T, Roggendorf W, Schomburg L, Kohrle J (2007) Neuronal and ependymal expression of selenoprotein P in the human brain. J Neural Transm 114(7):877–884

    CAS  PubMed  Google Scholar 

  40. Raman AV, Pitts MW, Seyedali A et al (2012) Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes Brain Behav 11(5):601–613

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hill KE, Wu S, Motley AK et al (2012) Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem 287(48):40414–40424

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Kurokawa S, Hill KE, McDonald WH, Burk RF (2012) Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem 287(34):28717–28726

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6(3):273–279

    CAS  PubMed  Google Scholar 

  44. Reid ME, Duffield-Lillico AJ, Slate E et al (2008) The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer 60(2):155–163

    CAS  PubMed  Google Scholar 

  45. Wallace K, Kelsey KT, Schned A, Morris JS, Andrew AS, Karagas MR (2009) Selenium and risk of bladder cancer: a population-based case–control study. Cancer Prev Res 2(1):70–73

    CAS  Google Scholar 

  46. Tan JA, An WY, Li RB (1987) The geo-medical characteristics of Keshan disease. Keshan disease prevention and treatment in China, pp 254–264

  47. Philipov P, Tzatchev K (1988) Selenium concentrations in serum of patients with cerebral and extracerebral tumors. Zentralbl Neurochir 49(4):344–347

    CAS  PubMed  Google Scholar 

  48. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

    CAS  PubMed  Google Scholar 

  49. Brat DJ, Castellano-Sanchez AA, Hunter SB et al (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64(3):920–927

    CAS  PubMed  Google Scholar 

  50. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228

    CAS  PubMed  Google Scholar 

  51. Rooprai HK, Kyriazis I, Nuttall RK et al (2007) Inhibition of invasion and induction of apoptosis by selenium in human malignant brain tumour cells in vitro. Int J Oncol 30(5):1263–1271

    CAS  PubMed  Google Scholar 

  52. Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M (2007) Inhibition of glioma cell line A-172 MMP activity and cell invasion in vitro by a nutrient mixture. Med Oncol 24(2):231–238

    CAS  PubMed  Google Scholar 

  53. Yoon SO, Kim MM, Chung AS (2001) Inhibitory effect of selenite on invasion of HT1080 tumor cells. J Biol Chem 276(23):20085–20092

    CAS  PubMed  Google Scholar 

  54. Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66(7):3347–3350

    CAS  PubMed  Google Scholar 

  55. Uğuz AC, Naziroğlu M, Espino J et al (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and −9 activities. J Membr Biol 232:15–23

    PubMed  Google Scholar 

  56. Kahya MC, Nazıroğlu M, Ciğ B (2014) Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol Trace Elem Res 160(2):285–293

    CAS  PubMed  Google Scholar 

  57. Sugie S, Tanaka T, El-Bayoumy K (2000) Chemoprevention of carcinogenesis by organoselenium compounds. J Health Sci 46(6):422–425

    CAS  Google Scholar 

  58. Whanger PD (2004) Selenium and its relationship to cancer: an update. Br J Nutr 91(1):11–28

    CAS  PubMed  Google Scholar 

  59. Zhou N, Xiao H, Li TK, Nur EKA, Liu LF (2003) DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 278(32):29532–29537

    CAS  PubMed  Google Scholar 

  60. Jung HJ, Seo YR (2010) Current issues of selenium in cancer chemoprevention. Biofactors 36(2):153–158

    CAS  PubMed  Google Scholar 

  61. Chintala S, Toth K, Cao S et al (2010) Se-methylselenocysteine sensitizes hypoxic tumor cells to irinotecan by targeting hypoxia-inducible factor 1 alpha. Cancer Chemother Pharmacol 66(5):899–911

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hu H, Li GX, Wang L, Watts J, Combs GF Jr, Lu J (2008) Methylseleninic acid enhances taxane drug efficacy against human prostate cancer and down-regulates antiapoptotic proteins Bcl-XL and survivin. Clin Cancer Res 14(4):1150–1158

    CAS  PubMed  Google Scholar 

  63. Tan Q, Li J, Yin HW et al (2010) Augmented antitumor effects of combination therapy of cisplatin with ethaselen as a novel thioredoxin reductase inhibitor on human A549 cell in vivo. Invest New Drugs 28(3):205–215

    CAS  PubMed  Google Scholar 

  64. Wei MX, Tamiya T, Chase M et al (1994) Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum Gene Ther 5(8):969–978

    CAS  PubMed  Google Scholar 

  65. Roy P, Yu LJ, Crespi CL, Waxman DJ (1999) Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 27(6):655–666

    CAS  PubMed  Google Scholar 

  66. Fraiser LH, Kanekal S, Kehrer JP (1991) Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 42(5):781–795

    CAS  PubMed  Google Scholar 

  67. Chabra A, Shokrzadeh M, Naghshvar F, Salehi F, Ahmadi A (2014) Melatonin ameliorates oxidative stress and reproductive toxicity induced by cyclophosphamide in male mice. Hum Exp Toxicol 33(2):185–195

    CAS  PubMed  Google Scholar 

  68. Das UB, Mallick M, Debnath JM, Ghosh D (2002) Protective effect of ascorbic acid on cyclophosphamide-induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl 4(3):201–207

    CAS  PubMed  Google Scholar 

  69. Ghosh D, Das UB, Ghosh S, Mallick M, Debnath J (2002) Testicular gametogenic and steroidogenic activities in cyclophosphamide treated rat: a correlative study with testicular oxidative stress. Drug Chem Toxicol 25(3):281–292

    CAS  PubMed  Google Scholar 

  70. Manda K, Bhatia AL (2003) Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biol Toxicol 19(6):367–372

    CAS  PubMed  Google Scholar 

  71. Korkmaz A, Topal T, Oter S (2007) Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol 23(5):303–312

    CAS  PubMed  Google Scholar 

  72. Behrman HR, Preston SL (1989) Luteolytic actions of peroxide in rat ovarian cells. Endocrinology 124(6):2895–2900

    CAS  PubMed  Google Scholar 

  73. Selvakumar E, Prahalathan C, Sudharsan PT, Varalakshmi P (2006) Chemoprotective effect of lipoic acid against cyclophosphamide-induced changes in the rat sperm. Toxicology 217(1):71–78

    CAS  PubMed  Google Scholar 

  74. Tripathi DN, Jena GB (2008) Ebselen attenuates cyclophosphamide-induced oxidative stress and DNA damage in mice. Free Radic Res 42(11–12):966–977

    CAS  PubMed  Google Scholar 

  75. Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S (2014) Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 29(2):303–317

    CAS  PubMed  Google Scholar 

  76. Kornblith PL, Walker M (1988) Chemotherapy for malignant gliomas. J Neurosurg 68(1):1–17

    CAS  PubMed  Google Scholar 

  77. Kyritsis AP (1993) Chemotherapy for malignant gliomas. Oncology 7(9):93–100

    CAS  PubMed  Google Scholar 

  78. Pech IV, Peterson K, Cairncross JG (1998) Chemotherapy for brain tumors. Oncology 12(4):537–543, 547

    CAS  PubMed  Google Scholar 

  79. Ghorbani A, Omidvar B, Parsi A (2013) Protective effect of selenium on cisplatin induced nephrotoxicity: a double-blind controlled randomized clinical trial. J Nephropathol 2(2):129–134

    PubMed Central  PubMed  Google Scholar 

  80. Nematbakhsh M, Ashrafi F, Pezeshki Z et al (2012) A histopathological study of nephrotoxicity, hepatoxicity or testicular toxicity: which one is the first observation as side effect of Cisplatin-induced toxicity in animal model? J Nephropathol 1(3):190–193

    PubMed Central  PubMed  Google Scholar 

  81. Doz F, Pinkerton R (1994) What is the place of carboplatin in paediatric oncology? Eur J Cancer 30A(2):194–201

    CAS  PubMed  Google Scholar 

  82. Calvert AH, Harland SJ, Newell DR et al (1982) Early clinical studies with cis-diammine-1,1-cyclobutane dicarboxylate platinum II. Cancer Chemother Pharmacol 9(3):140–147

    CAS  PubMed  Google Scholar 

  83. Foster BJ, Clagett-Carr K, Leyland-Jones B, Hoth D (1985) Results of NCI-sponsored phase I trials with carboplatin. Cancer Treat Rev 12(Suppl A):43–49

    PubMed  Google Scholar 

  84. Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50(2):147–158

    CAS  PubMed  Google Scholar 

  85. Pinzani V, Bressolle F, Haug IJ, Galtier M, Blayac JP, Balmes P (1994) Cisplatin-induced renal toxicity and toxicity-modulating strategies: a review. Cancer Chemother Pharmacol 35(1):1–9

    CAS  PubMed  Google Scholar 

  86. Sahni V, Choudhury D, Ahmed Z (2009) Chemotherapy-associated renal dysfunction. Nat Rev Nephrol 5(8):450–462

    CAS  PubMed  Google Scholar 

  87. Naziroglu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    CAS  PubMed  Google Scholar 

  88. Chamberlain MC (2010) Temozolomide: Therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev Neurother 10(10):1537–1544

    CAS  PubMed  Google Scholar 

  89. Omar AI, Mason WP (2010) Temozolomide: the evidence for its therapeutic efficacy in malignant astrocytomas. Core Evid 4:93–111

    PubMed Central  PubMed  Google Scholar 

  90. Chakravarti A, Erkkinen MG, Nestler U et al (2006) Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res 12(15):4738–4746

    CAS  PubMed  Google Scholar 

  91. Carmo A, Carvalheiro H, Crespo I, Nunes I, Lopes MC (2011) Effect of temozolomide on the U-118 glioma cell line. Oncol Lett 2(6):1165–1170

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Gao S, Yang XJ, Zhang WG, Ji YW, Pan Q (2009) Mechanism of thalidomide to enhance cytotoxicity of temozolomide in U251-MG glioma cells in vitro. Chin Med J 122(11):1260–1266

    CAS  PubMed  Google Scholar 

  93. Cheng Y, Sk UH, Zhang Y et al (2012) Rational incorporation of selenium into temozolomide elicits superior antitumor activity associated with both apoptotic and autophagic cell death. PLoS One 7(4):e35104

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Letavayova L, Vlckova V, Brozmanova J (2006) Selenium: from cancer prevention to DNA damage. Toxicology 227(1–2):1–14

    CAS  PubMed  Google Scholar 

  95. Biswas S, Talukder G, Sharma A (2000) Chromosome damage induced by selenium salts in human peripheral lymphocytes. Toxicol In Vitro 14(5):405–408

    CAS  PubMed  Google Scholar 

  96. Letavayova L, Vlasakova D, Spallholz JE, Brozmanova J, Chovanec M (2008) Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res 638(1–2):1–10

    CAS  PubMed  Google Scholar 

  97. Wycherly BJ, Moak MA, Christensen MJ (2004) High dietary intake of sodium selenite induces oxidative DNA damage in rat liver. Nutr Cancer 48(1):78–83

    CAS  PubMed  Google Scholar 

  98. Blot WJ, Li JY, Taylor PR et al (1993) Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst 85(18):1483–1492

    CAS  PubMed  Google Scholar 

  99. Hercberg S, Galan P, Preziosi P et al (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164(21):2335–2342

    CAS  PubMed  Google Scholar 

  100. Hercberg S, Ezzedine K, Guinot C et al (2007) Antioxidant supplementation increases the risk of skin cancers in women but not in men. J Nutr 137(9):2098–2105

    CAS  PubMed  Google Scholar 

  101. Lippman SM, Klein EA, Goodman PJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301(1):39–51

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Goossens ME, Buntinx F, Joniau S et al (2012) Designing the selenium and bladder cancer trial (SELEBLAT), a phase lll randomized chemoprevention study with selenium on recurrence of bladder cancer in Belgium. BMC Urol 12:8

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nic E. Savaskan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakubov, E., Buchfelder, M., Eyüpoglu, I.Y. et al. Selenium Action in Neuro-Oncology. Biol Trace Elem Res 161, 246–254 (2014). https://doi.org/10.1007/s12011-014-0111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0111-8

Keywords

Navigation