Skip to main content

Uptake of CeO2 Nanoparticles and Its Effect on Growth of Medicago arborea In Vitro Plantlets


The present study analyzes some effects of nano-CeO2 particles on the growth of in vitro plantlets of Medicago arborea when the nanoceria was added to the culture medium. Various concentrations of nano-CeO2 and bulk ceric oxide particles in suspension form were introduced to the agar culture medium to compare the effects of nanoceria versus ceric oxide bulk material. Germination rate and shoot dry weight were not affected by the addition of ceric oxide to the culture media. Furthermore, no effects were observed on chlorophyll content (single-photon avalanche diode (SPAD) measurements) due to the presence of either nano- or micro-CeO2 in the culture medium. When low concentrations of nanoceria were added to the medium, the number of trifoliate leaves and the root length increased but the root dry weight decreased. Also the values of maximum photochemical efficiency of PSII (F v/F m) showed a significant decrease. Dark-adapted minimum fluorescence (F 0) significantly increased in the presence of 200 mg L−1 nanoceria and 400 mg L−1 bulk material. Root tissues were more sensitive to nanoceria than were the shoots at lower concentrations of nanoceria. A stress effect was observed on M. arborea plantlets due to cerium uptake.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


F 0 :

Dark-adapted minimum fluorescence

F v :

Variable fluorescence

F m :

Maximum fluorescence


Inductively coupled plasma-atomic emission spectroscopy




Pulse amplitude modulated


Rare earth elements


Single-photon avalanche diode


  1. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    PubMed  Article  CAS  Google Scholar 

  2. Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong F (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132:247–258

    PubMed  Article  CAS  Google Scholar 

  3. He YW, Loh CS (2000) Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. Plant Sci 159:117–124

    PubMed  Article  CAS  Google Scholar 

  4. Hu QH, Ye ZJ (1996) Physiological effects of rare earth elements on plants. Plant Physiol Comm 32(4):296–300

    CAS  Google Scholar 

  5. Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199

    PubMed  Article  CAS  Google Scholar 

  6. Zhang P, Ma Y, Zhang Z, He X, Guo Z, Tai R, Ding Y, Zhao Y, Chai Z (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841

  7. Metzler DM, Erdem A, Tseng YH, Huang CP (2012) Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type. J Nanotech Article ID 237284, 12 pages doi:10.1155/2012/237284

  8. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agr Food Chem 58(6):3689–3693

    Article  Google Scholar 

  9. U.S. Environmental Protection Agency (1996) Ecological effects test guidelines (OPPTS 850.4200): seed germination/root elongation toxicity test. EPA 712–C–96-154. Washington, DC.

  10. Remedios C, Rosario F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot Article ID 751686, 8 pages doi:10.1155/2012/751686

  11. Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot-London 101(7):971–982

    Article  CAS  Google Scholar 

  12. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel Botez CH, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    PubMed  Article  PubMed Central  Google Scholar 

  13. Weiping S, Fashui H, Zhigang W, Yuzhen Z, Fugen G, Hongoing X, Mingliang Y, Youhong C, Mizhen Z, Jiale S (2003) Effects of cerium on nitrogen metabolism of peach plantlet in vitro. Biol Trace Elem Res 95:256–268

    Article  Google Scholar 

  14. Martín JP, Pintos B, Rebordinos I, Villalobos N, Guerra H, Martín L (2000) Embryogenic response in different Medicago arborea L. explants depending on cytokinin/auxin balances. J Plant Physiol 165:801–804

    Article  Google Scholar 

  15. Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    PubMed  Article  CAS  Google Scholar 

  16. OECD (2006) Test No. 208: Terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing. doi: 10.1787/9789264070066-en

  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  18. Fang S, Sun W, Hu H, Zhang H, Zheng K (2012) Chlorophyll content of barley (Hordeum vulgare L.) estimation from leaf SPAD, chlorophyll fluorescence and reflectance properties. Adv Sci Lett 11:702–705

    Article  CAS  Google Scholar 

  19. Garate A, Ramón AM, Carpena OR (1984) Influencia del boro sobre el manganeso y otros nutrientes en extractos de tejidos vasculares. Annales de Edafología y Agrobiología 43(9–10):1467–1477

    CAS  Google Scholar 

  20. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    PubMed  Article  CAS  Google Scholar 

  21. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng. doi:10.1021/sc400098h

    Google Scholar 

  22. Shyam R, Aery NC (2011) Effect of cerium on seed germination and early seedling growth of wheat. NBU J Plant Sci 5:51–55

    Google Scholar 

  23. Shyam R, Aery NC (2012) Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. J Soil Sci Plant Nutr 12(1):1–14

    Article  Google Scholar 

  24. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    PubMed  Article  CAS  Google Scholar 

  27. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    PubMed  Article  CAS  Google Scholar 

  28. Prieto P, Peñuelas J, Llusia J, Asensio D, Estiarte M (2009) Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiol Plant 31:729–739

    Article  Google Scholar 

  29. Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganes F, Garcia-Calvo E, Rosal R, Fernandez-Pinas F (2012) An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol 122:133–143

    PubMed  Article  Google Scholar 

  30. Rohácek K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

  31. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    PubMed  Article  CAS  Google Scholar 

  32. Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

  33. Krause GH, Weiss E (1991) Chlorophyll fluorescence and photosynthesis; the basics. Annu Rev Plant Phys 42:313–349

    Article  CAS  Google Scholar 

  34. Bjorkman O, Demmig B (1987) Photon yield for O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    PubMed  Article  CAS  Google Scholar 

  35. Gholamin R, Khayatnezhad M (2011) The effects of water and salt stresses on germination in two bread wheat genotypes. Ar J Biotech 10(77):17805–17811

    CAS  Google Scholar 

  36. Bounfour M, Tanigoshi LK, Chen C, Cameron SJ, Klauer S (2002) Chlorophyll content and chlorophyll fluorescence in red raspberry leaves infested with Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Environ Entomol 31(2):215–220

    Article  CAS  Google Scholar 

  37. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. doi:10.1016/j.scitotenv.2010.03.031

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Aranzazu Gomez-Garay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez-Garay, A., Pintos, B., Manzanera, J.A. et al. Uptake of CeO2 Nanoparticles and Its Effect on Growth of Medicago arborea In Vitro Plantlets. Biol Trace Elem Res 161, 143–150 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Nanoparticles
  • In vitro culture
  • Photosynthesis