Biological Trace Element Research

, Volume 161, Issue 3, pp 263–271 | Cite as

Selenium Deficiency Inhibits the Conversion of Thyroidal Thyroxine (T4) to Triiodothyronine (T3) in Chicken Thyroids

  • Shi-lei Lin
  • Cong-wu Wang
  • Si-ran Tan
  • Yang Liang
  • Hai-dong Yao
  • Zi-wei ZhangEmail author
  • Shi-wen XuEmail author


Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.


Thyroid function Selenium deficiency Selenoproteins Chicken Thyroid 



This study was supported by the Major Projects of International Cooperation and Exchanges NSFC (31320103920), the National Natural Science Foundation of China (31272626), the Doctoral Fund of the Ministry of Education of China (20122325110018), the Heilongjiang Postdoctoral Fund (LBH-Z13028), and the Heilongjiang Province Science Foundation for Youths (QC2014C015), the Study Abroad Foundation of Heilongjiang Province (LC201031). The authors thank Elsevier English Language Editing System to correct grammatical, spelling, and other common errors.

Conflict of Interest

The authors declare that there were no conflicts of interest


  1. 1.
    Kohrle J, Jakob F, Contempre B et al (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984PubMedCrossRefGoogle Scholar
  2. 2.
    Meinhold H, Campos-Barros A, Walzog B et al (1993) Effects of selenium and iodine deficiency on type I, type II and type III iodothyronine deiodinases and circulating thyroid hormones in the rat. Exp Clin Endocrinol 101:87–93PubMedCrossRefGoogle Scholar
  3. 3.
    Beckett GJ, Beddows SE, Morrice PC et al (1987) Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J 248:443–447PubMedCentralPubMedGoogle Scholar
  4. 4.
    Arthur JR, Morrice PC, Beckett GJ (1988) Thyroid hormone concentrations in selenium deficient and selenium sufficient cattle. Res Vet Sci 45:122–123PubMedGoogle Scholar
  5. 5.
    Yu S, Howard KA, Wedekind KJ et al (2002) A low-selenium diet increases thyroxine and decreases 3,5,3′triiodothyronine in the plasma of kittens. J Anim Physiol Anim Nutr 86:36–41CrossRefGoogle Scholar
  6. 6.
    Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443PubMedCrossRefGoogle Scholar
  7. 7.
    Stadtman TC (2000) Selenium biochemistry. Mammalian selenoenzymes. Ann N Y Acad Sci 899:399–402PubMedCrossRefGoogle Scholar
  8. 8.
    Pappas AC, Zoidis E, Surai PF et al (2008) Selenoproteins and maternal nutrition. Comp Biochem Physiol B Biochem Mol Biol 151:361–372PubMedCrossRefGoogle Scholar
  9. 9.
    Lescure A, Rederstorff M, Krol A et al (2009) Selenoprotein function and muscle disease. Biochim Biophys Acta 1790:1569–1574PubMedCrossRefGoogle Scholar
  10. 10.
    Bellinger FP, Raman AV, Reeves MA et al (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66:2457–2478PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Huang JQ, Li DL, Zhao H et al (2012) The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J Nutr 141:1605–1610CrossRefGoogle Scholar
  13. 13.
    Liu Y, Zhao H, Zhang QS et al (2012) Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J Nutr 142:1410–1416PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Yao HD, Wu Q, Zhang ZW et al (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143:613–619PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zhang JL, Li JL, Huang XD et al (2012) Dietary selenium regulation of transcript abundance of selenoprotein N and selenoprotein W in chicken muscle tissues. Biometals 25:297–307PubMedCrossRefGoogle Scholar
  16. 16.
    Ruan H, Zhang Z, Wu Q et al (2012) Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system. Biol Trace Elem Res 145:59–65PubMedCrossRefGoogle Scholar
  17. 17.
    Sun B, Wang R, Li J et al (2011) Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol Trace Elem Res 143:1516–1523PubMedCrossRefGoogle Scholar
  18. 18.
    Li JL, Ruan HF, Li HX et al (2011) Molecular cloning, characterization and mRNA expression analysis of a novel selenoprotein: avian selenoprotein W from chicken. Mol Biol Rep 38:4015–4022PubMedCrossRefGoogle Scholar
  19. 19.
    Li JL, Li HX, Li S et al (2012) Effects of selenoprotein W gene expression by selenium involves regulation of mRNA stability in chicken embryos neurons. Biometals 25:459–468PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang ZW, Zhang JL, Gao YH et al (2013) Effect of oxygen free radicals and nitric oxide on apoptosis of immune organ induced by selenium deficiency in chickens. Biometals 26:355–365PubMedCrossRefGoogle Scholar
  21. 21.
    Wang R, Sun B, Zhang Z et al (2011) Dietary selenium influences pancreatic tissue levels of selenoprotein W in chickens. J Inorg Biochem 105:1156–1160PubMedCrossRefGoogle Scholar
  22. 22.
    Gao X, Xing H, Li S et al (2012) Selenium regulates gene expression of selenoprotein W in chicken gastrointestinal tract. Biol Trace Elem Res 145:181–188PubMedCrossRefGoogle Scholar
  23. 23.
    Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  25. 25.
    Darras VM, Kotanen SP, Geris KL et al (1996) Plasma thyroid hormone levels and iodothyronine deiodinase activity following an acute glucocorticoid challenge in embryonic compared with posthatch chickens. Gen Comp Endocrinol 104:203–212PubMedCrossRefGoogle Scholar
  26. 26.
    Jianhua H, Ohtsuka A, Hayashi K (2000) Selenium influences growth via thyroid hormone status in broiler chickens. Br J Nutr 84:727–732PubMedGoogle Scholar
  27. 27.
    Arthur JR, Nicol F, Beckett GJ (1992) The role of selenium in thyroid hormone metabolism and effects of selenium deficiency on thyroid hormone and iodine metabolism. Biol Trace Elem Res 34:321–325PubMedCrossRefGoogle Scholar
  28. 28.
    Kohrle J (1999) The trace element selenium and the thyroid gland. Biochimie 81:527–533PubMedCrossRefGoogle Scholar
  29. 29.
    Kandhro GA, Kazi TG, Sirajuddin et al (2011) Effects of selenium supplementation on iodine and thyroid hormone status in a selected population with goitre in Pakistan. Clin Lab 57:575–585PubMedGoogle Scholar
  30. 30.
    St Germain DL, Galton VA (1997) The deiodinase family of selenoproteins. Thyroid 7:655–668PubMedCrossRefGoogle Scholar
  31. 31.
    Baur A, Buchfelder M, Kohrle J (2002) Expression of 5′-deiodinase enzymes in normal pituitaries and in various human pituitary adenomas. Eur J Endocrinol 147:263–268PubMedCrossRefGoogle Scholar
  32. 32.
    Burmeister LA, Pachucki J, St Germain DL (1997) Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology 138:5231–5237PubMedGoogle Scholar
  33. 33.
    Beckett GJ, Russell A, Nicol F et al (1992) Effect of selenium deficiency on hepatic type I 5-iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat. Biochem J 282(Pt 2):483–486PubMedCentralPubMedGoogle Scholar
  34. 34.
    Bermano G, Nicol F, Dyer JA et al (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311(Pt 2):425–430PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kohrle J, Gartner R (2009) Selenium and thyroid. Best Pract Res Clin Endocrinol Metab 23:815–827PubMedCrossRefGoogle Scholar
  36. 36.
    Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465PubMedCrossRefGoogle Scholar
  37. 37.
    Abdulah R, Miyazaki K, Nakazawa M et al (2005) Chemical forms of selenium for cancer prevention. J Trace Elem Med Bio 19:141–150CrossRefGoogle Scholar
  38. 38.
    Howie AF, Walker SW, Akesson B et al (1995) Thyroidal extracellular glutathione peroxidase: a potential regulator of thyroid-hormone synthesis. Biochem J 308(Pt 3):713–717PubMedCentralPubMedGoogle Scholar
  39. 39.
    Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87PubMedCrossRefGoogle Scholar
  40. 40.
    Burek CL, Rose NR (2008) Autoimmune thyroiditis and ROS. Autoimmun Rev 7:530–537PubMedCrossRefGoogle Scholar
  41. 41.
    Dayan CM, Daniels GH (1996) Chronic autoimmune thyroiditis. N Engl J Med 335:99–107PubMedCrossRefGoogle Scholar
  42. 42.
    Poncin S, Gerard AC, Boucquey M et al (2008) Oxidative stress in the thyroid gland: from harmlessness to hazard depending on the iodine content. Endocrinology 149:424–433PubMedCrossRefGoogle Scholar
  43. 43.
    Mariotti M, Ridge PG, Zhang Y et al (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7:e33066PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Veterinary MedicineNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations