Skip to main content

Advertisement

Log in

Hepatic Transcriptome Profiles Differ Among Maturing Beef Heifers Supplemented with Inorganic, Organic, or Mixed (50 % Inorganic:50 % Organic) Forms of Dietary Selenium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an important trace mineral that, due to deficiencies in the soil in many parts of the USA, must be supplemented directly to the diet of foraging cattle. Both organic and inorganic forms of dietary Se supplements are available and commonly used, and it is known that Se form affects tissue assimilation, bioavailability, and physiological responses. However, little is known about the effects of form of dietary Se supplements on gene expression profiles, which ostensibly account for Se form-dependent physiological processes. To determine if hepatic transcriptomes of growing beef (Angus-cross) heifers (0.5 kg gain/day) was altered by form of dietary supplemental Se, none (Control), or 3 mg Se/day as inorganic Se (ISe, sodium selenite), organic (OSe, Sel-Plex®), or a blend of ISe and OSe (1.5 mg:1.5 mg, Mix) Se was fed for 168 days, and the RNA expression profiles from biopsied liver tissues was compared by microarray analysis. The relative abundance of 139 RNA transcripts was affected by Se treatment, with 86 of these with complete gene annotations. Statistical and bioinformatic analysis of the annotated RNA transcripts revealed clear differences among the four Se treatment groups in their hepatic expression profiles, including (1) solely and commonly affected transcripts; (2) Control and OSe profiles being more similar than Mix and ISe treatments; (3) distinct OSe-, Mix-, and ISe-Se treatment-induced “phenotypes” that possessed both common and unique predicted physiological capacities; and (4) expression of three microRNAs were uniquely sensitive to OSe, ISe, or Mix treatments, including increased capacity for redox potential induced by OSe and Mix Se treatments resulting from decreased expression of MiR2300b messenger RNA. These findings indicate that the form of supplemental dietary Se consumed by cattle will affect the composition of liver transcriptomes resulting, presumably, in different physiological capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BOLA-DQA2:

Bos taurus major histocompatibility complex, class II, DQ alpha 2

DEG:

Differentially expressed gene

DDHD1:

Phosphatidic acid-prefering phospholipase A1

GHRH:

Growth hormone-releasing hormone

GPX1:

Cellular glutathione peroxidase-1

ISe:

Inorganic selenium

miRNA:

microRNA

mRNA:

Messenger RNA

Mix:

50:50 ISe:OSe

OSe:

Organic selenium

QPCT:

Glutaminyl-peptide cyclotransferease

Se:

Selenium

SeCys:

Selenocysteine

SeMet:

Selenomethionine

SEPW:

Selenoprotein W

References

  1. Suzuki KT (2005) Metabolomics of selenium: Se metabolites based on speciation studies. J Health Sci 51:107–114

    Article  CAS  Google Scholar 

  2. Pehrson B (1993) Diseases and diffuse disorders related to selenium deficiencies in ruminants. Nor J Agric Sci 11:79–93

    Google Scholar 

  3. Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 128:104–109

    Article  CAS  PubMed  Google Scholar 

  4. National Research Council (1996) Minerals. In: Nutrient requirements of beef cattle, 7th revised edition. 2001 Update. National Academy Press, Washington, DC, pp 54–74

  5. Ammerman CB, Miller SM (1975) Selenium in ruminant nutrition: a review. J Dairy Sci 58:1561–1571

    Article  CAS  PubMed  Google Scholar 

  6. Dargatz DA, Ross PF (1996) Blood selenium concentrations in cows and heifers on 253 cow-calf operations in 18 states. J Anim Sci 74:2891–2895

    CAS  PubMed  Google Scholar 

  7. Food and Drug Administration (1987) Food additives permitted in feed and drinking water of animals: selenium. Fed Reg 52:10668

    Google Scholar 

  8. Korhola M, Vainio A, Edelmann K (1986) Selenium yeast. Ann Clin Res 18:65–68

    CAS  PubMed  Google Scholar 

  9. Liao SF, Brown KR, Stromberg AJ, Burris WR, Boling JA, Matthews JC (2011) Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations and liver gene expression profiles of growing beef heifers. Biol Trace Elem Res 140:151–169

    Article  CAS  PubMed  Google Scholar 

  10. Brennan KM, Burris WR, Boling JA, Matthews JC (2011) Selenium content in blood fractions and live of beef heifers is greater with a mix of inorganic/organic or organic versus inorganic supplemental selenium but the time required for maximal assimilation is tissue-specific. Biol Trace Elem Res 144:504–516

    Article  CAS  PubMed  Google Scholar 

  11. Ortman K, Pehrson B (1999) Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci 77:3365–3370

    CAS  PubMed  Google Scholar 

  12. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  13. Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99:909–917

    Article  Google Scholar 

  14. Partek D (2009) Partek documentation: turning data into discovery. Partek Incorporated, St. Louis

    Google Scholar 

  15. Lewis BP, Burge CP, Bartel DP (2005) Conserved seed pairing, oftern flanked by adenosine, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  16. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalians are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fischer A, Pallauf J, Gohil K, Weber SU, Packer L, Rimbach G (2001) Effect of selenium and vitamin E deficiency on differential gene expression in rat liver. Biochem Biophys Res Commun 285:470–475

    Article  CAS  PubMed  Google Scholar 

  18. Huang J-Q, Li D-L, Zhao H, Sun L-H, Xia X-J, Wang K-N, Luo X, Lei XG (2011) The selenium deficiency disease exudative diathesis in chicks is associated with down regulation of seven common selenoprotein genes in liver and muscle. J Nutr 141:1605–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sun B, Wang RH, Li J, Jiang Z, Xu S (2011) Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol Trace Elem Res 143:1516–1523

    Article  CAS  PubMed  Google Scholar 

  20. Ullrey DE (1987) Biochemical and physiological indicators of selenium status in animals. J Anim Sci 65:1712–1726

    CAS  PubMed  Google Scholar 

  21. Corah LR (1996) Trace mineral requirements of grazing cattle. Anim Feed Sci Technol 59:61–70

    Article  CAS  Google Scholar 

  22. Surai PF (2006) Selenium in ruminant nutrition. In: Selenium in nutrition and health. Nottingham University Press, Nottingham, UK, pp 487–587

  23. Jeong D, Kim TS, Chung YW, Lee BJ, Kim IY (2002) Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett 517:225–228

    Article  CAS  PubMed  Google Scholar 

  24. Mori Y, Kajimoto T, Nakao A, Takahashi N, Kiyonaka S (2011) Receptor signaling integration by TRP channelsomes. Adv Exp Med Biol 704:373–389

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto S, Takahashi N, Mori Y (2010) Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol 103:18–27

    Article  CAS  PubMed  Google Scholar 

  26. Bon RS, Beech DJ (2013) In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels – mirage or pot of gold? Br J Pharmacol 170:459–474

    CAS  PubMed  Google Scholar 

  27. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109:95–104

    CAS  PubMed  Google Scholar 

  28. Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rychkov GY, Barritt G (2011) Expression and function of TRP channels in liver cells. Adv Exp Med Biol 704:667–686

    Article  CAS  PubMed  Google Scholar 

  30. Guo H, Nairn A, dela Rosa M, Nagy T, Zhao S, Moreman K, Pierce M (2012) Transcriptional regulation of the protocadherin β lucster during Her-2 protein-induced mammary tumorigenesis results from altered N-glycan branching. J Biol Chem 287:24941–24954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kitagishi Y, Matsuda S (2013) RUFY, Rab and Rap family proteins involved in a regulation of cell polarity and membrane trafficking. Int J Mol Sci 14:6487–6498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nakazawa H, Sada T, Toriyama M, Tago K, Sugiura T, Fukuda M, Inagaki N (2012) Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth. J Neurosci 32:12712–12725

    Article  CAS  PubMed  Google Scholar 

  33. Tsuneoka Y, Matsuo Y, Higuchi R, Ichikawa Y (1992) Characterization of the cytochrome P-450IID subfamily in bovine liver. Nucleotide sequences and microheterogeneity. Eur J Biochem 280:739–746

    Article  Google Scholar 

  34. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–111

    Article  CAS  PubMed  Google Scholar 

  35. Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogen J 5:6–13

    Article  CAS  Google Scholar 

  36. Kimura T, Sakisaka T, Baba T, Yamada T, Takai Y (2006) Involvement of the Ras-Ras-activated Rab5 guanine nucleotide exchange factor RIN2-Rab5 pathway in the hepatocyte growth factor-induced endocytosis of E-cadherin. J Biol Chem 281:10598–10609

    Article  CAS  PubMed  Google Scholar 

  37. Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, Del Conte-Zerial P, Hengstler JG, Kalaidzidis Y, Koteliansky V, Zerial M (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485:465–470

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita A, Oka S, Tanikawa T, Hayashi Y, Neomoto-Sasaki Y, Sugiura T (2013) The actions and metabolism of lysophosphatidylinositol, an endogenous agonist for GPR55. Prostagland Lipid Mediat 107:103–116

    CAS  Google Scholar 

  39. Higgs HN, Han MH, Johnson GE, Glomset JA (1998) Cloning of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 273:5468–5477

    Article  CAS  PubMed  Google Scholar 

  40. Moreno-Navarrette JM, Catalán V, Whyte L, Díaz-Arteaga A, Vázquez-Martínez R, Rotellar F, Guzmán R, Gómez-Ambrosi J, Pulido MR, Russell WR, Imbernón M, Ross RA, Malagón MM, Dieguez C, Fernández-Real JM, Frühbeck G, Nogueiras R (2012) The l-alpha-lysophosphatidylinositol/GPR55 system and its potential role in obesity. Diabetes 61:281–291

    Article  Google Scholar 

  41. Simocks AC, O’Keefe L, Jenkin KA, Mathai ML, Hryciw DH, McAinch AJ (2011) A potential role for GPR55 in the regulation of energy homeostasis. Drug Discov Today. doi:10.1016/j.drudis.2013.12.005

    Google Scholar 

  42. Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:382–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang FW, Ulyanova NP, van der Waal MS, Patnaik D, Lens SM, Higgins JM (2011) A positive feedback loop involving Haspin and Aurora B promotes CPC accumulation at centromeres in mitosis. Curr Biol 21:1061–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Okado H, Ohataka-Maruyama C, Sugitani Y, Fukuda Y, Ishida R, Hirai S, Miwa A, Takahashi A, Aoki K, Mochida K, Suzuki O, Honda T, Nakajima K, Ogawa M, Terashima T, Matsuda J, Kawano H, Kasai M (2009) The transcriptional repressor RP58 is crucial for cell-division patterning and neuroanl survival in the developing cortex. Dev Biol 331:140–151

    Article  CAS  PubMed  Google Scholar 

  45. Kelly KF, Daniel JM (2006) POZ for effect-POZ-ZF transcription factors in cancer and development. Trends Cell Biol 16:578–587

    Article  CAS  PubMed  Google Scholar 

  46. Fischer WH, Spiess J (1987) Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. PNAS USA 84:3628–3632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Cynis H, Kehlen A, Haegele M, Hoffmann T, Fujii U, Shibazaki Y, Yoneyama H, Schilling S, Demuth HU (2013) Inhibition of glutaminyl cyclases alleviates CCL2-mediated inflammation of non-alcoholic fatty liver disease in mice. Int J Exp Pathol 94:217–225

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  CAS  PubMed  Google Scholar 

  49. Yakubenko VP, Bhattacharjee A, Pluskota E, Cathcart MK (2011) alphaMbeta2 Integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation. Circ Res 108:544–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zaia KA, Reimer RJ (2009) Synaptic vesicle protein NTT4/XT1 (SLC6A17) catalyzes Na+-coupled neutral amino acid transport. J Biol Chem 284:8439–8448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hohla F, Moder A, Mayrhauser U, Hauser-Kronberger C, Schally AV, Varga JL, Zarandi M, Buchholz S, Huber R, Aigner E, Ritter M, Datz C (2008) Differential expression of GHRH receptor and its splice variant 1 in human normal and malignant mucosa of the oesophagus and colon. Int J Oncol 33:137–143

    CAS  PubMed  Google Scholar 

  52. Kiaris H, Chatzistamou I, Papavassiliou AG, Schally AV (2011) Growth hormone-releasing hormone: not only a neurohormone. Trends Endocrinol Metab 22:311–317

    Article  CAS  PubMed  Google Scholar 

  53. Christodoulou C, Schally AV, Chatzistamou I, Kondi-Pafiti A, Lamnissou K, Kouloheri S, Kalofoutis A, Kiaris H (2006) Expression of growth hormone-releasing hormone (GHRH) and splice variant of GHRH receptors in normal mouse tissues. Regul Pept 136:105–108

    Article  CAS  PubMed  Google Scholar 

  54. Bagnato A, Moretti C, Ohnishi J, Frajese G, Catt KJ (1992) Expression of the growth hormone-releasing hormone gene and its peptide product in the rat ovary. Endocrinology 130:1097–1102

    CAS  PubMed  Google Scholar 

  55. Berry SA, Srivastava CH, Rubin LR, Phipps WR, Pescovitz OH (1992) Growth hormone-releasing hormone-like messenger ribonucleic acid and immunoreactive peptide are present in human testis and placenta. J Clin Endocrinol Metab 75:281–284

    CAS  PubMed  Google Scholar 

  56. Bosman FT, Van Assche C, Nieuwenhuyzen Kruseman AC, Jackson S, Lowry PJ (1984) Growth hormone-releasing factor (GRF) immunoreactivity in human and rat gastrointestinal tract and pancreas. J Histochem Cytochem 32:1139–1144

    Article  CAS  PubMed  Google Scholar 

  57. Sesma JI, Esther CR Jr, Kreda SM, Jones L, O’Neal W, Nishihara S, Nicholas RA, Lazarowski ER (2009) Endoplasmic reticulum/golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules. J Biol Chem 284:12572–12583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ishida N, Kuba T, Aoki K, Miyatake S, Kawakita M, Sanai Y (2005) Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. Genomics 85:106–116

    Article  CAS  PubMed  Google Scholar 

  59. Xu J, Morinaga H, Oh D, Li P, Chen A, Talukdar S, Mamane Y, Mancini JA, Nawrocki AR, Lazarowski E, Olefsky JM, Kim JJ (2012) GPR105 ablation prevents inflammation and improves insulin sensitivity in mice with diet-induced obesity. J Immunol 189:1992–1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhang G, Hao C, Lou Y, Xi W, Wang X, Wang Y, Qu Z, Guo C, Chen Y, Zhang Y, Liu S (2010) Tissue-specific expression of TIPE2 provides insights into its function. Mol Immunol 47:2435–2442

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Shi Y, Wang Y, Zhu F, Wang Q, Ma C, Chen YH, Zhang L (2011) The unique expression profile of human TIPE2 suggests new functions beyond its role in immune regulation. Mol Immunol 48:1209–1215

    Article  CAS  PubMed  Google Scholar 

  62. Sun H, Gong S, Carmody RJ, Hilliard A, Li L, Sun J, Kong L, Xu L, Hilliard B, Hu S, Shen H, Yang X, Chen YH (2008) TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 133:415–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lou Y, Liu S, Zhang C, Zhang G, Li J, Ni M, An G, Dong M, Liu X, Zhu F, Zhang W, Gao F, Chen YH, Zhang Y (2013) Enhanced atherosclerosis in TIPE-2deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein. J Immunol 191:4849–4857

    Article  CAS  PubMed  Google Scholar 

  64. Chaudhary K, Liedtke C, Wertenbruch S, Trautwein C, Streetz KL (2013) Caspase8differentially controls hepatocytes and non-parenchymal liver cells during chronic cholestatic liver injury in mice. J Hepatol 59:1292–1298

    Article  CAS  PubMed  Google Scholar 

  65. Gus-Brautbar Y, Johnson D, Zhang L, Sun H, Wang P, Zhang S, Zhang L, Chen YH (2012) The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Mol Cell 45:610–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Zeng Q, Subramaniam VN, Wong SH, Tang BL, Parton RG, Rea S, James DE, Hong W (1998) A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell 9:2423–2437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hasan N, Corbin D, Hu C (2010) Fusogenic pairings of vesicle-associated membrane proteins (VAMPs) and plasma membrane t-SNAREs–VAMP5 as the exception. PLoS ONE 5:e14238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ko J, Fuccillo MV, Malenka RC, Südh (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64:791–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Bang ML, Owczarek S (2013) A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res 38:1174–1189

    Article  CAS  PubMed  Google Scholar 

  70. Laurén J, Airaksinen MS, Saarma M (2003) Timmusk T (2003) A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics 81:411–421

    Article  PubMed  Google Scholar 

  71. Soler-Llavina GJ, Fuccillo MV, Ko J, Sudhof TC, Malenka RC (2011) The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. PNAS 108:16502–16509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123:3685–3692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Morooka A, Asahina M, Kohda C, Tajima S, Niimi M, Nishino Y, Sugiyama M, Aida Y (1995) Nucleotide sequence and the molecular evolution of a new A2 gene in the DQ subregion of the bovine major histocompatibility complex. Biochem Biophys Res Commun 212:110–117

    Article  CAS  PubMed  Google Scholar 

  74. Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC (2009) Regulation of MHC II gene expression, genetic variation, and disease. Genes Immun 11:99–112

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hou Q, Huang J, Ju Z, Li Q, Li L, Wang C, Sun T, Wang L, Hou M, Hang S, Zhong J (2012) Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQ2 gene in dairy cattle. DNA Cell Biol 31:739–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marçais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL (2009) A whole genome-assembly of the domestic cow, Bos taurus. Genome Biol 10(4):R42

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ding W, Fujimura M, Mori A, Tooyama I, Kimura H (1991) Light and electron microscopy of neuropeptide Y-containing nerves in human liver, gallbladder, and pancreas. Gastroenterology 101:1054–1059

    CAS  PubMed  Google Scholar 

  78. El-Salhy M (2000) Neuropeptide levels in murine liver and biliary pathways. Ups J Med Sci 105:207–213

    CAS  PubMed  Google Scholar 

  79. Kim HY, Cho S, Yu J, Sung S, Kim H (2010) Analysis of copy number variation in 8,842 Korean individuals reveals 39 genes associated with hepatic biomarkers AST and ALT. BMB Rep 43:547–553

    Article  CAS  PubMed  Google Scholar 

  80. Yamashita A, Kumazawa T, Koga H, Suzuki N, Oka S, Sugiura T (2010) Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochim Biophys Acta 1801:711–720

    Article  CAS  PubMed  Google Scholar 

  81. Savulescu AF, Glickman MH (2011) Proteasome activator 200: The HEAT is on…. Mol Cell. doi:10.1074/mcp.M110.006890

    Google Scholar 

  82. Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO 21:3516–3525

    Article  CAS  Google Scholar 

  83. Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP (2006) Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 26:2999–3007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  CAS  PubMed  Google Scholar 

  85. Jung T, Bader N, Grune T (2007) Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 462:231–237

    Article  CAS  PubMed  Google Scholar 

  86. Gong D, Ferrell JE Jr (2010) The roles of cyclin A2, B1, and B2 in early and late mitotic events. Mol Biol Cell 21:3149–3161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Wang X, Quail E, Hung NJ, Tan Y, Ye H, Costa RH (2001) Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc Natl Acad Sci U S A 98:11468–11473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Alves LA, Coutinho-Silva R, Persechini PM, Spay DC, Savino W, Campos de Carvalho AC (1996) Are there functional gap junctions or junctional hemichannels in macrophages? Blood 88:328–334

    CAS  PubMed  Google Scholar 

  89. Alves LA, Campos de Carvalho AC, Savino W (1998) Gap junctions: a novel route for direct cell-cell communication in the immune system. Immunol Today 19:269–275

    Article  CAS  PubMed  Google Scholar 

  90. Ilardi JM, Mochida S, Sheng ZH (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2:119–124

    Article  CAS  PubMed  Google Scholar 

  91. Pan PY, Tian JH, Sheng ZH (2009) Snapin facilitates the synchronization of synaptic vesicle fusion. Neuron 61:412–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Alltech-University of Kentucky Animal Nutrigenomics Alliance (JCM), University of Kentucky, and Kentucky Agricultural Experiment Station. The information reported in this paper (publication no. 14-07-038) is part of a project of the Kentucky Agricultural Experiment Station and is published with approval of the Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Matthews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, J.C., Zhang, Z., Patterson, J.D. et al. Hepatic Transcriptome Profiles Differ Among Maturing Beef Heifers Supplemented with Inorganic, Organic, or Mixed (50 % Inorganic:50 % Organic) Forms of Dietary Selenium. Biol Trace Elem Res 160, 321–339 (2014). https://doi.org/10.1007/s12011-014-0050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0050-4

Keywords

Navigation