Skip to main content
Log in

Concentration Profiles of Metals in Breast Milk, Drinking Water, and Soil: Relationship Between Matrices

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The concentrations of Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, and Zn were determined in breast milk of women living in Conceição das Alagoas, Minas Gerais, Brazil. The potential relationships between metal levels in samples of breast milk, drinking water, and soils collected in the study area were also established. Metal levels in breast milk, except Cr, were lower in comparison to WHO reference concentrations. Zinc was the predominant element in breast milk and drinking water samples, with a median level of 46.2 and 82.2 μg · L−1, respectively. Soils presented a different pattern of metal concentrations with respect to those found in breast milk and drinking water, Chromium showed the highest median levels (148 mg · kg−1), while a certain predominance of Zn and Cu was also observed (47.0 and 43.0 mg · kg−1, respectively). Similar profiles were observed when comparing metal concentrations in drinking water and breast milk (chi-square χ 2 = 14.36; p < 0.05). In contrast, breast milk-soil and drinking water-soil metal concentration profiles showed significant differences (χ 2 = 635.05 and χ 2 = 721.78, respectively; p < 0.05). These results indicate that drinking water is an important exposure pathway for metals to newborns through breast milk. Further studies should be aimed at assessing the body burdens of metals in that population and at evaluating the potential relationships in the concentrations in biological and environmental matrices as well as at estimating the contribution of dietary intake of metals. In addition, the presence of other chemical pollutants in breast milk should be also studied in order to assess the combined newborn exposure to other contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lange C, Visalli M, Jacob S et al (2013) Maternal feeding practices dining the first year and their impact on infants acceptance of complementary food. Food Qual Prefer 29:89–98

    Article  Google Scholar 

  2. Pound CM, Unger SL (2012) The baby-friendly initiative: protecting, promoting and supporting breastfeeding. Paediatr Child Health 17:317–321

    PubMed Central  PubMed  Google Scholar 

  3. WHO (World Health Organization) (2009) Infant and young child feeding: model chapter for textbooks for medical students and allied health professional. Geneva, Switzerland

  4. Morisset T, Ramirez-Martinez A, Wesolek N et al (2013) Probabilistic mercury multimedia exposure assessment in small children and risk assessment. Environ Int 59:431–441

    Article  CAS  PubMed  Google Scholar 

  5. Weldon RH, Webster M, Harley KG et al (2010) Serum persistent organic pollutants and duration of lactation among Mexican-American women. J Environ Publ Health. doi:10.1155/2010/861757

    Google Scholar 

  6. Itsumura N, Inamo Y, Okazaki F, Teranishi F, Narita H et al (2013) Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS ONE 8:640–645

    Article  Google Scholar 

  7. Mead MN (2008) Contaminants in human milk: weighing the risks against the benefits of breastfeeding. Environ Health Perspect 116:427–434

    Google Scholar 

  8. El Morsy FA, El-Sadaawy MM, Ahdy HH et al (2013) Potential human health risks from toxic metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides via canned fish consumption: estimation of target hazard quotients. J Environ Sci Health 48:1470–1478

    Article  Google Scholar 

  9. Gebrekidan A, Weldegebriel Y, Hadera A et al (2013) Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol Environ Saf 95:171–178

    Article  CAS  PubMed  Google Scholar 

  10. Varol M (2013) Dissolved heavy metal concentrations of the Kralkizi, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 93:954–962

    Article  CAS  PubMed  Google Scholar 

  11. Alves RIS, Cardoso OO, Tonani KAA et al (2013) Water quality of the Ribeirão Preto Stream, a watercourse under anthropogenic influence in the southeast of Brazil. Environ Monit Assess 185:1151–1161

    Article  Google Scholar 

  12. Nikaido M, Tonani KAA, Julião FC et al (2010) Analysis of bactéria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant. Biol Trace Elem Res 134:342–351

    Article  CAS  PubMed  Google Scholar 

  13. Câmara Municipal de Conceição das Alagoas (2010). http://www.camaraconceicao.mg.gov.br/historia.php. Accessed 31 March 2014

  14. Bergkvist C, Lignell S, Sand S et al (2010) A probabilistic approach for estimating infant exposure to environmental pollutants in human breast milk. J Environ Monit 12:1029–1036

    Article  CAS  PubMed  Google Scholar 

  15. Anderson AR, Sweeney DJ, Williams TA (2007) Estatística aplicada à Administração e Economia, São Paulo, Editora Thomson Pioneira, 2nd p.616

  16. Koyashiki GAK, Paoliello MMB, Matsuo T et al (2010) Lead levels in milk and blood from donors to the breast milk bank in Southern Brazil. Environ Res 110:265–271

    Article  PubMed  Google Scholar 

  17. Rahimi E, Hashemi M, Baghbadorani ZT (2009) Determination of cadmium and lead in human milk. Int J Environ Sci Technol 6:671–676

    Article  CAS  Google Scholar 

  18. Abballe A, Ballard TJ, Dellatte E et al (2008) Persistent environmental contaminants in human milk: concentrations and time trends in Italy. Chemosphere 73(Suppl 1):220–227

    Article  Google Scholar 

  19. Gürbay A, Charehsaz M, Eken A et al (2012) Toxic metals in breast milk samples from Ankara, Turkey: assessment of lead, cadmium, nickel, and arsenic levels. Biol Trace Elem Res 149:117–122

    Article  PubMed  Google Scholar 

  20. Marques RC, Moreira MDFR, Bernardi JVE et al (2013) Breast milk lead concentrations of mothers living near tin smelters. Bull Environ Contam Toxicol 91:549–554

    Article  CAS  PubMed  Google Scholar 

  21. Goudarzi MA, Parsaei P, Nayebpour F et al (2013) Determination of mercury, cadmium and lead in human milk in Iran. Toxicol Ind Health 29:820–823

    Article  CAS  PubMed  Google Scholar 

  22. Ferré-Huguet N, Nadal M, Schuhmacher M et al (2009) Human health risk assessment for environmental exposure to metals in the Catalan stretch of the Ebro River, Spain. Hum Ecol Risk Assess 15:604–623

    Article  Google Scholar 

  23. Adewuyi GO, Etchie AT, Etchie TO (2014) Health risk assessment of exposure to metals in a Nigerian water supply. Hum Ecol Risk Assess 20:29–44

    Article  CAS  Google Scholar 

  24. Nascimento SAM, Barbosa JSF (2005) Qualidade da água do aqüífero freático no alto cristalino de Salvador, Bacia do Rio Lucaia, Salvador, Bahia. Rev Bras Geocienc 35:543–550

    Google Scholar 

  25. Azevedo RP (2006) Uso da água subterrânea em sistema de abastecimento público de comunidades na várzea da Amazônia central. Acta Amazon 36:313–320

    Article  Google Scholar 

  26. CETESB. Companhia Ambiental do Estado de São Paulo. Secretaria de Estado do Meio Ambiente (2005) Valores Orientadores para solos e águas subterrâneas no Estado de São Paulo, Artigo 1° da Decisão de Diretoria nº 195–2005-E

  27. Silveira ML, Alleoni LRF, Chang A (2008) Condicionadores químicos de solo e retenção e distribuição de cádmio, zinco e cobre em latossolos tratados com biossólidos. R Bras Ci Solo 32:1087–1098

    Article  CAS  Google Scholar 

  28. Linares V, Perelló G, Nadal M et al (2010) Environmental versus dietary exposure to POPs and metals: a probabilistic assessment of human health risks. J Environ Monit 12:681–688

    Article  CAS  PubMed  Google Scholar 

  29. Bressler JP, Olivi L, Cheong JH et al (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152

    Article  CAS  PubMed  Google Scholar 

  30. Bressler JP, Olivi L, Cheong JH et al (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26:221–229

    Article  CAS  PubMed  Google Scholar 

  31. Mandour RA, Ghanem AA, El-Azab SM (2013) Correlation between lead levels in drinking water and mothers’ breast milk: Dakahlia, Egypt. Environ Geochem Health 35:251–256

    Article  CAS  PubMed  Google Scholar 

  32. Sengar RS, Gautam M, Garg SK et al (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:73–93

    CAS  PubMed  Google Scholar 

  33. Islam EU, Yang X, He Z et al (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  34. Melo LCA, Alleoni LRF, Swarties FA et al (2012) Cadmium uptake by lettuce (Lactuva sativa L.) as basis for derivation of risk limits in soils. Hum Ecol Risk Assess 8:888–901

    Article  Google Scholar 

  35. Segura-Muñoz SI, Da Silva Oliveira A, Nikaido M et al (2006) Metals levels in sugar cane (Saccharum spp.) samples from and área under the influence of a municipal landfill and a medical waste treatment system in Brazil. Environ Int 32:52–57

  36. Funk WE, McGee JK, Olshan AF et al (2013) Quantification of arsenic, lead, mercury and cadmium in newborn dried blood spots. Biomarkers 18:174–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Oskarsson A, Hallén IP, Sundberg J et al (1998) Risk assessment in relation to neonatal metal exposure. Analyst 123:19–23

    Article  CAS  PubMed  Google Scholar 

  38. Schuhmacher M, Kiviranta H, Ruokojärvi P et al (2013) Levels of PCDD/Fs, PCBs and PBDEs in breast milk of women living in the vicinity of a hazardous waste incinerator: assessment of the temporal trend. Chemosphere 93:1533–1540

    Article  CAS  PubMed  Google Scholar 

  39. Björklund KL, Vahter M, Palm B et al (2012) Metals and trace element concentrations in breast milk of first time healthy mothers: a biological monitoring study. Environ Health 11:92

    Article  PubMed Central  PubMed  Google Scholar 

  40. Weisstaub G, Uauy R (2012) Non-breast milk feeding in developing countries: challenge from microbial and chemical contaminants. Ann Nutr Metab 60:215–219

    Article  CAS  PubMed  Google Scholar 

  41. WHO (World Health Organization) (1989) Minor and trace elements in human milk. Geneva, Switzerland

  42. Costa SL, Malm O, Dórea JG (2005) Breast-milk mercury concentrations and amalgam surface in mothers from Brasília, Brazil. Biol Trace Elem Res 106:145–151

    Article  PubMed  Google Scholar 

  43. Mastroeni SS, Okada IA, Rondo PH et al (2006) Concentrations of Fe, K, Na, Ca, P, Zn and Mg in maternal colostrum and mature milk. J Trop Pediatr 52:272–275

    Article  PubMed  Google Scholar 

  44. Liu K, Hao J, Xu Y et al (2013) Breast milk lead and cadmium levels in suburban areas of Nanjing, China. Chin Med Sci J 28:7–15

    Article  CAS  PubMed  Google Scholar 

  45. Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E (2005) Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere 61:238–247

    Article  CAS  PubMed  Google Scholar 

  46. Isaac CPJ, Sivakumar A, Kumar CRP (2012) Lead levels in breast milk, blood plasma and intelligence quotient: a health hazard for women and infants. Bull Environ Contam Toxicol 88:145–149

    Article  CAS  PubMed  Google Scholar 

  47. Khaghani S, Ezzatpanah H, Mazhari N et al (2010) Zinc and copper concentrations in human milk and infant formulas. Iran J Pediatr 20:53–57

    PubMed Central  PubMed  Google Scholar 

  48. Kim SY, Park JH, Kim EAR et al (2012) Longitudinal study on trace mineral compositions (selenium, zinc, copper, manganese) in Korean human preterm milk. J Korean Med Sci 27:532–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Winiarska-Mieczan A (2014) Cadmium, lead, copper and zinc in breast milk in Poland. Biol Trace Elem Res 157:36–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Almeida AA, Lopes CMPV, Silva MAS et al (2008) Trace elements in human milk: correlation with blood levels, inter-element correlations and changes in concentration during the first month of lactation. J Trace Elem Med Biol 22:196–205

    Article  CAS  PubMed  Google Scholar 

  51. García-Esquinas G, Pérez-Gómez B, Fernández MA et al (2011) Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere 85:268–276

    Article  PubMed  Google Scholar 

  52. Örün E, Yalçin SS, Aykut O et al (2011) Breast milk lead and cadmium levels from suburban areas of Ankara. Sci Total Environ 409:2467–2472

    Article  PubMed  Google Scholar 

  53. Abdulrazzaq YM, Osman N, Nagelkerke N et al (2008) Trace element composition of plasma and breast milk of well-nourished women. J Environ Sci Health Part A 43:329–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the CAPES (Coordination for Improvement of Higher Level Personnel-Ministry of Education, Brazil), FAPESP (State of Sao Paulo Research Foundation) and the Santander Group through the granting of a scholarship in the International Exchange Program with the Iberian Countries. The authors wish to thank the participating mothers, Ademir Pedro de Sene, Raquel Vieira de Sene and the nurse Maria Luiza Barbon, for their help during sampling and Rogério C. Calia form the Department of Business Administration, School of Economics, Business and Accounting of Ribeirao Preto, University of São Paulo for the data analysis recommendation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana I. Segura-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, O.O., Julião, F.C., Alves, R.I.S. et al. Concentration Profiles of Metals in Breast Milk, Drinking Water, and Soil: Relationship Between Matrices. Biol Trace Elem Res 160, 116–122 (2014). https://doi.org/10.1007/s12011-014-0030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0030-8

Keywords

Navigation