Skip to main content
Log in

Distribution of Graphene Oxide and TiO2-Graphene Oxide Composite in A549 Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Graphene and its derivatives are increasingly applied in nanoelectronics, biosensing, drug delivery, and biomedical applications. However, the information about its cytotoxicity remains limited. Herein, the distribution and cytotoxicity of graphene oxide (GO) and TiO2-graphene oxide composite (TiO2-GO composite) were evaluated in A549 cells. Cell viability and cell ultrastructure were measured. Our results indicated that GO could enter A549 cells and located in the cytoplasm and nucleus without causing any cell damage. TiO2 nanoparticles and GO would be separated after TiO2-GO composite entered A549 cells. TiO2-GO composite could induce cytotoxicity similar to TiO2 nanoparticles, which was probably attributed to oxidative stress. These results should be considered in the development of biological applications of GO and TiO2-GO composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li D, Kaner RB (2008) Graphene-based materials. Nat Nanotechnol 3:101

    Article  CAS  PubMed  Google Scholar 

  2. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578

    Article  CAS  PubMed  Google Scholar 

  3. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  CAS  PubMed  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  Google Scholar 

  5. Guo S, Dong S, Wang E (2009) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1):547–555

    Article  Google Scholar 

  6. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    Article  CAS  PubMed  Google Scholar 

  7. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220

    Article  CAS  Google Scholar 

  8. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  CAS  PubMed  Google Scholar 

  10. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  PubMed  Google Scholar 

  11. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  12. Cote LJ, Kim F, Huang J (2008) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131(3):1043–1049

    Article  Google Scholar 

  13. Lieber M, Todaro G, Smith B, Szakal A, Nelson-Rees W (1976) A continuous tumor‐cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17(1):62–70

    Article  CAS  PubMed  Google Scholar 

  14. Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243(2):359–366

    Article  CAS  PubMed  Google Scholar 

  15. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21(3):438–448

    Article  CAS  PubMed  Google Scholar 

  16. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750

    Article  CAS  PubMed  Google Scholar 

  17. Tang Y, Wang F, Jin C, Liang H, Zhong X, Yang Y (2013) Mitochondrial injury induced by nanosized titanium dioxide in A549 cells and rats. Environ Toxicol Pharmacol 36(1):66–72

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm C, Billotey C, Roger J, Pons J, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011

    Article  CAS  PubMed  Google Scholar 

  19. Gupta AK, Berry C, Gupta M, Curtis A (2003) Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobioscience 2(4):255–261

    Article  PubMed  Google Scholar 

  20. Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, Lee KH, Sohn BH, Park SB, Lee JK (2006) Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7(4):321–326

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628(2):99–106

    Article  CAS  PubMed  Google Scholar 

  22. Tröger L, Yokoyama T, Arvanitis D, Lederer T, Tischer M, Baberschke K (1994) Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-X-ray photoabsorption. Phys Rev B Condens Matter 49(2):888–903

    Article  PubMed  Google Scholar 

  23. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573

    Article  CAS  PubMed  Google Scholar 

  24. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1):145–152

    Article  CAS  Google Scholar 

  25. Compagnini G, Giannazzo F, Sonde S, Raineri V, Rimini E (2009) Ion irradiation and defect formation in single layer graphene. Carbon 47(14):3201–3207

    Article  CAS  Google Scholar 

  26. Li W, Chen C, Ye C, Wei T, Zhao Y, Lao F, Chen Z, Meng H, Gao Y, Yuan H (2008) The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19(14):145102

    Article  PubMed  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  PubMed  Google Scholar 

  28. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  PubMed  Google Scholar 

  29. Kim KT, Klaine SJ, Cho J, Kim S-H, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408(10):2268–2272

    Article  CAS  PubMed  Google Scholar 

  30. Mocan T, Clichici S, Agoşton-Coldea L, Mocan L, Şimon Ş, Ilie I, Biriş A, Mureşan A (2010) Implications of oxidative stress mechanisms in toxicity of nanoparticles (review). Acta Physiol Hung 97(3):247–255

    Article  CAS  PubMed  Google Scholar 

  31. Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141(1–3):3–15

    Article  CAS  PubMed  Google Scholar 

  32. Li N, Ma L, Wang J, Zheng L, Liu J, Duan Y, Liu H, Zhao X, Wang S, Wang H (2010) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5(1):108–115

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB932800), National Public Benefit Research Sector of China (Grant No. 201210284-02), National Natural Science Foundation of China (Grant No. 11105221), and Youth Foundation of Second Military Medical University (Grant No. 2010QN02).

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Wang, F., Tang, Y. et al. Distribution of Graphene Oxide and TiO2-Graphene Oxide Composite in A549 Cells. Biol Trace Elem Res 159, 393–398 (2014). https://doi.org/10.1007/s12011-014-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0027-3

Keywords

Navigation