Skip to main content
Log in

Is the Hypoglycemic Action of Vanadium Compounds Related to the Suppression of Feeding?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Vanadium compounds exhibit effective hypoglycemic activity in both type I and type II diabetes mellitus. However, there was one argument that the hypoglycemic action of vanadium compounds could be attributable to the suppression of feeding—one common toxic aspect of vanadium compounds. To clarify this question, we investigated in this work the effect of a vanadyl complex, BSOV (bis((5-hydroxy-4-oxo-4H-pyran-2-yl)methyl-2-hydroxy-benzoatato) oxovanadium (IV)), on diabetic obese (db/db) mice at a low dose (0.05 mmol/kg/day) when BSOV did not inhibit feeding. The experimental results showed that this dose of BSOV effectively normalized the blood glucose level in diabetic mice without affecting the body weight growth. Western blotting assays on the white adipose tissue of db/db mice further indicated that BSOV treatment significantly improved expression of peroxisome proliferator-activated receptor γ (PPARγ) and activated AMP-activated protein kinase (AMPK). In addition, vanadium treatment caused a significant suppression of phosphorylation of c-Jun N-terminal protein kinase (JNK), which plays a key role in insulin-resistance in type II diabetes. This is the first evidence that the mechanism of insulin enhancement action involves interaction of vanadium compounds with JNK. Overall, the present work indicated that vanadium compounds exhibit antidiabetic effects irrelevant to food intake suppression but by modulating the signal transductions of diabetes and other metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477

    Article  CAS  PubMed  Google Scholar 

  2. Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and Mode of Action. J Biol Chem 262:6658–6662

    CAS  PubMed  Google Scholar 

  3. Leahy JL, Hirsch IB, Peterson KA, Schneider D (2010) Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus. J Clin Endocrinol Metab 95:4206–4216

    Article  CAS  PubMed  Google Scholar 

  4. Thompson KH, Orvig C (2006) Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem 100:1925–1935

    Article  CAS  PubMed  Google Scholar 

  5. Thompson KH, Lichter J, LeBel C, Scaife M, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558

    Article  CAS  PubMed  Google Scholar 

  6. Barrio DA, Etcheverry SB (2010) Potential use of vanadium compounds in therapeutics. Curr Med Chem 17:3632–3642

    Article  CAS  PubMed  Google Scholar 

  7. Huang ML, Wu YL, Zhao P, Yang XD (2013) Update of metal-based drugs: problems and approaches for solution. Prog Chem 25:650–660

    CAS  Google Scholar 

  8. Malabu UH, Dryden S, McCarthy HD, Kilpatrick A, Williams G (1994) Effects of chronic vanadate administration in the STZ-induced diabetic rat. The antihyperglycemic action of vanadate is attributable entirely to its suppression of feeding. Diabetes 43:9–15

    Article  CAS  PubMed  Google Scholar 

  9. Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 153:217–231

    Article  CAS  PubMed  Google Scholar 

  10. Willsky GR, Goldfine AB, Kostyniak PJ, McNeill JH, Yang LQ, Khan HR, Crans DC (2001) Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). J Inorg Biochem 85:33–42

    Article  CAS  PubMed  Google Scholar 

  11. Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med 16:253–267

    Article  CAS  Google Scholar 

  12. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851

    Article  CAS  PubMed  Google Scholar 

  13. Zhao P, Yang XD (2013) Vanadium compounds modulate PPAR gamma activity primarily by increasing PPAR gamma protein levels in mouse insulinoma NIT-1 cells. Metallomics 5:836–843

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann JM, Moore LB, Smitholiver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high-affinity ligand for peroxisome proliferator-activated peceptor gamma(Ppar-Gamma). J Biol Chem 270:12953–12956

    Article  CAS  PubMed  Google Scholar 

  15. Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM (1996) The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 39:665–668

    Article  CAS  PubMed  Google Scholar 

  16. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514

    Article  CAS  PubMed  Google Scholar 

  17. Chen WL, Chen YL, Chiang YM, Wang SG, Lee HM (2012) Fenofibrate lowers lipid accumulation in myotubes by modulating the PPAR alpha/AMPK/FoxO1/ATGL pathway. Biochem Pharmacol 84:522–531

    Article  CAS  PubMed  Google Scholar 

  18. Hwang SL, Chang HW (2012) Natural vanadium-containing Jeju ground water stimulates glucose uptake through the activation of AMP-activated protein kinase in L6 myotubes. Mol Cell Biochem 360:401–409

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Huang M, Zhao P, Yang X (2013) Vanadyl acetylacetonate upregulates PPARgamma and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem 18:623–631

    Article  CAS  PubMed  Google Scholar 

  20. Olefsky JM (2000) Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J Clin Invest 106:467–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wei Y, Zhang C, Zhao P, Yang X, Wang K (2011) A new salicylic acid-derivatized kojic acid vanadyl complex: synthesis, characterization and anti-diabetic therapeutic potential. J Inorg Biochem 105:1081–1085

    Article  CAS  PubMed  Google Scholar 

  22. Wei YB, Yang XD (2012) Synthesis, characterization and anti-diabetic therapeutic potential of a new benzyl acid-derivatized kojic acid vanadyl complex. Biometals 25:1261–1268

    Article  CAS  PubMed  Google Scholar 

  23. Fakih S, Podinovskaia M, Kong X, Collins HL, Schaible UE, Hider RC (2008) Targeting the lysosome: fluorescent iron(III) chelators to selectively monitor endosomal/lysosomal labile iron pools. J Med Chem 51:4539–4552

    Google Scholar 

  24. Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2000) Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and derivatives. Inorg Chem 39:406–416

    Article  CAS  PubMed  Google Scholar 

  25. Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F (2009) Cross-talk between PPAR gamma and insulin signaling and modulation of insulin sensitivity. PPAR Res. doi:10.1155/2009/818945

    PubMed Central  PubMed  Google Scholar 

  26. Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F (2009) Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci 14:3380–3400

    Article  CAS  Google Scholar 

  27. Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054

    Article  CAS  PubMed  Google Scholar 

  28. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537

    Article  CAS  PubMed  Google Scholar 

  29. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  CAS  PubMed  Google Scholar 

  30. Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902

    Article  CAS  PubMed  Google Scholar 

  31. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M (2004) Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 279:45803–45809

    Article  CAS  PubMed  Google Scholar 

  32. Ijaz A, Tejada T, Catanuto P, Xia X, Elliot SJ, Lenz O, Jauregui A, Saenz MO, Molano RD, Pileggi A, Ricordi C, Fornoni A (2009) Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int 75:381–388

    Article  CAS  PubMed  Google Scholar 

  33. Gao ZL, Zhang CY, Yu SW, Yang XD, Wang K (2011) Vanadyl bisacetylacetonate protects beta cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 16:789–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project (no. 21271012 and 20971008) was supported by NSFC and Founder Research Fund for Drug Discovery and Innovation. We thank Prof. John J. Hefferren of The University of Kansas for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoda Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Wu, Y., Wang, N. et al. Is the Hypoglycemic Action of Vanadium Compounds Related to the Suppression of Feeding?. Biol Trace Elem Res 157, 242–248 (2014). https://doi.org/10.1007/s12011-013-9882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9882-6

Keywords

Navigation