Skip to main content
Log in

The Effect of Deposition Se on the mRNA Expression Levels of GPxs in Goats from a Se-enriched County of China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies revealed that Se was an important regulatory factor for glutathione peroxidase (GPx) genes. However, the relationship between Se concentrations and mRNA expression levels of GPxs were unclear in goats, especially the goats living in natural Se-enriched area. Thus, the aim of this study was to determine the Se concentrations and the mRNA expression levels of GPx-1, GPx-2, GPx-3, and GPx-4 in goats from Ziyang County (ZY-H and ZY-L goats) and Baoji City (BJ-P goats), which were Se-rich region and Se-poor region in China, respectively. Atomic fluorescence spectrometry was used as an essential method to determine the Se concentrations in heart, liver, spleen, lung, kidney, longissimus, biceps femoris, and serum, and the gene expressions were quantified in mRNA samples extracted from the above tissues by real-time quantitative reverse transcription–polymerase chain reaction. We found that the Se concentrations in ZY-H and ZY-L goats were higher than that in BJ-P goats significantly (P < 0.05), and the pertinence relations of Se levels between serum and heart, liver, spleen, and kidney were significant (P < 0.05). The mRNA levels of GPx-1 in ZY-H and ZY-L goats were higher than that in BJ-P goats very significantly (P < 0.01) except for longissimus (P < 0.05). Our results indicated a significant trend for GPx-2 in the direction of increasing mRNA levels with increasing Se concentrations in goats but had no statistical significance (P > 0.05) in our experimental conditions. As to GPx-3, its mRNA expression in spleen, lung, and kidney (P < 0.05) were upregulated and were consensual to high Se contents in ZY-H goats, but no significant effects were observed in heart, liver, longissimus, and biceps femoris among our three groups (P > 0.05). The mRNA levels of GPx-4 in heart, liver, lung, and kidney of ZY-H and ZY-L goats were higher than that of BJ-P goats (P < 0.05), and the difference was very significant in lung especially (P < 0.01), but no change in spleen, longissimus, and biceps femoris (P > 0.05). In summary, these data suggested that the goats living in Ziyang County were rich in Se, and the deposition Se played important roles in the mRNA expression of GPx-1, GPx-3, and GPx-4 in certain tissues of goats differentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu K, Zhao Y, Chen F, Gu Z, Bu G (2011) Enhanced glutathione peroxidases (GPx) activity in young barley seedlings enriched with selenium. Afr J Biotechnol 10(55):11483–11487

    CAS  Google Scholar 

  2. Zhan X, Qie Y, Wang M, Li X, Zhao R (2011) Selenomethionine: an effective selenium source for sow to improve Se distribution, antioxidant status, and growth performance of pig offspring. Biol Trace Elem Res 142(3):481–491

    PubMed  CAS  Google Scholar 

  3. Hoefig CS, Renko K, Koehrle J, Birringer M, Schomburg L (2011) Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem 22(10):945–955

    PubMed  CAS  Google Scholar 

  4. Encinar JR, Sliwka KM, Polatajko A, Vacchina V, Szpunar J (2003) Methodological advances for selenium speciation analysis in yeast. Anal Chim Acta 500(1–2):171–183

    Google Scholar 

  5. Tapiero H, Townsend D, Tew K (2003) The antioxidant role of selenium and seleno-compounds. Biomedicine Pharmacother 57(3):134–144

    CAS  Google Scholar 

  6. Spallholz JE, Hoffman DJ (2002) Selenium toxicity cause and effects in aquatic birds. Aquat Toxicol 57(1–2):27–37

    PubMed  CAS  Google Scholar 

  7. Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52(11):1273–1280

    PubMed  CAS  Google Scholar 

  8. Zhang Q, Chen L, Guo K, Zheng L, Liu B, Yu W, Guo C, Liu Z, Chen Y, Tang Z (2013) Effects of different selenium levels on gene expression of a subset of selenoproteins and antioxidative capacity in mice. Biol Trace Elem Res 154(2):255–261

    PubMed  CAS  Google Scholar 

  9. Ou BR, Jiang MJ, Lin CH, Liang YC, Lee KJ, Yeh JY (2011) Characterization and expression of chicken selenoprotein W. Biometals 24(2):323–333

    PubMed  CAS  Google Scholar 

  10. Ruan H, Zhang Z, Wu Q, Yao H, Li J, Li S, Xu S (2012) Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system. Biol Trace Elem Res 145(1):59–65

    PubMed  CAS  Google Scholar 

  11. Jerome MA, Bera S, Rachidi W, Gann PH, Diamond AM (2013) The effects of selenium and the GPx-1 selenoprotein on the phosphorylation of H2AX. Biochim Biophys Acta Gen Subj 1830(6):3399–3406

    Google Scholar 

  12. Doni M, Falanga A, Delaini F, Vicenzi E, Tomasiak M, Donati M (1984) The effect of vitamin E or selenium on the oxidant-antioxidant balance in rats. Br J Exp Pathol 65(1):75–80

    PubMed  CAS  Google Scholar 

  13. Awadeh FT, Kincaid RL, Johnson KA (1998) Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. J Anim Sci 76(4):1204–1215

    PubMed  CAS  Google Scholar 

  14. Muth O, Oldfield J, Remmert L, Schubert JR (1958) Effects of selenium and vitamin E on white muscle disease. Science 128:1090

    PubMed  CAS  Google Scholar 

  15. Rotruck J, Pope A, Ganther H, Swanson A, Hafeman DG, Hoekstra W (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    PubMed  CAS  Google Scholar 

  16. Zhang JX, Wang Q, Xun WJ, Ren YS, Yue WB, Zhang CX (2011) GPXs family genes in different tissues and goat testis express characteristics of different development periods study. J Anim Husb Vet 42(5):650–657

    CAS  Google Scholar 

  17. Liu CX, Li SC, Chen J, Liu MF, Yan LJ, Wang YR, Zhang H, Pei JR, Zhou LW, Hou J (2011) Selenium and protein and selenium rats myocardial GPX1, GPX4 expression and translation. Chin J Prev Cure Endemic Dis 26(1):4–6

    CAS  Google Scholar 

  18. Forgione MA, Weiss N, Heydrick S, Cap A, Klings ES, Bierl C, Eberhardt RT, Farber HW, Loscalzo J (2002) Cellular glutathione peroxidase deficiency and endothelial dysfunction. Am J Physiol Heart Circ Physiol 282(4):1255–1261

    Google Scholar 

  19. Esworthy RS, Swiderek KM, Ho YS, Chu FF (1998) Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochim Biophys Acta (BBA) Gen Sub 1381(2):213–226

    CAS  Google Scholar 

  20. Florian S, Wingler K, Schmehl K, Jacobasch G, Kreuzer OJ, Meyerhof W, Brigelius FR (2001) Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic Res 35(6):655–663

    PubMed  CAS  Google Scholar 

  21. Komatsu H, Okayasu I, Mitomi H, Imai H, Nakagawa Y, Obata F (2001) Immunohistochemical detection of human gastrointestinal glutathione peroxidase in normal tissues and cultured cells with novel mouse monoclonal antibodies. J Histochem Cytochem 49(6):759–766

    PubMed  CAS  Google Scholar 

  22. Chu FF, Esworthy RS, Doroshow JH (2004) Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic Biol Med 36(12):1481–1495

    PubMed  CAS  Google Scholar 

  23. Whitin JC, Tham DM, Bhamre S, Ornt DB, Scandling JD, Tune BM, Salvatierra O, Avissar N, Cohen HJ (1998) Plasma glutathione peroxidase and its relationship to renal proximal tubule function. Mol Genet Metab 65(3):238–245

    PubMed  CAS  Google Scholar 

  24. Chabory E, Damon C, Lenoir A, Henry BJ, Vernet P, Cadet R, Saez F, Drevet J (2010) Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci 88(4):1321–1331

    PubMed  CAS  Google Scholar 

  25. Gromer S, Eubel J, Lee B, Jacob J (2005) Human selenoproteins at a glance. Cell Mol Life Sci 62(21):2414–2437

    PubMed  CAS  Google Scholar 

  26. Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21(1):453–473

    PubMed  CAS  Google Scholar 

  27. Chu FF, Esworthy RS, Doroshow J, Doan K, Liu XF (1992) Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood 79(12):3233–3238

    PubMed  CAS  Google Scholar 

  28. Tham DM, Whitin JC, Kim KK, Zhu SX, Cohen HJ (1998) Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 275(6):1463–1471

    Google Scholar 

  29. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biophys Acta (BBA) Lipids Lipid Metab 710(2):197–211

    CAS  Google Scholar 

  30. Chen ZH, Ren HE, Xu LM (2013) Effect of Ligustrum lucidum on muscle antioxidant capacity and GPx4 gene expression of AA Broilers. Chin J Anim Sci 49(5):53–56

    Google Scholar 

  31. Gatellier P, Mercier Y, Renerre M (2004) Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Sci 67(3):385–394

    PubMed  CAS  Google Scholar 

  32. Conrad M, Schneider M, Seiler A, Bornkamm GW (2007) Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol Chem 388(10):1019–1025

    PubMed  CAS  Google Scholar 

  33. Agbor GA, Vinson JA, Patel S, Patel K, Scarpati J, Shiner D, Wardrop F, Tompkins TA (2007) Effect of selenium and glutathione enriched yeast supplementation on a combined atherosclerosis and diabetes hamster model. J Agric Food Chem 55(21):8731–8736

    PubMed  CAS  Google Scholar 

  34. Hoffmann PR, Höge SC, Li PA, Hoffmann FW, Hashimoto AC, Berry MJ (2007) The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 35(12):3963–3973

    PubMed  CAS  Google Scholar 

  35. Pilarczyk B, Drozd R, Pilarczyk R, Tomza-Marciniak A, Jankowiak D, Hendzel D, Kuba J, Kowalska J (2011) Glutathione peroxidase (GSHPx) activity in the liver of red deer in relation to hepatic selenium concentrations, sex, body weight and season of the year. Biol Trace Elem Res 144(1):560–569

    PubMed  CAS  Google Scholar 

  36. Dębski B, Zachara B, Wąsowicz W (2001) An attempt to evaluate the level of selenium in Poland and its influence on the healthiness of people and animals. Folia Univ Agric Stetin Zootech 224(42):31–38

    Google Scholar 

  37. Youssef MA, Elkhodery SA, Ibrahim HMM (2013) Effect of selenium and vitamin C on clinical outcomes, trace element status, and antioxidant enzyme activity in horses with acute and chronic lower airway disease. Biol Trace Elem Res 152(3):333–342

    PubMed  CAS  Google Scholar 

  38. Pilarczyk B, Tomza Marciniak A, Mituniewicz Małek A, Wieczorek Dąbrowska M, Pilarczyk R, Wójcik J, Balicka Ramisz A, Bąkowska M, Dmytrów I (2010) Selenium content in selected products of animal origin and estimation of the degree of cover daily Se requirement in Poland. Int J Food Sci Technol 45(1):186–191

    CAS  Google Scholar 

  39. Thiry C, Schneider YJ, Pussemier L, De Temmerman L, Ruttens A (2013) Selenium bioaccessibility and bioavailability in Se-enriched food supplements. Biol Trace Elem Res 152(1):152–160

    PubMed  CAS  Google Scholar 

  40. Luo PL, Zhang P, He J, Mao XB, Yu B, Chen DW (2012) Different selenium sources and levels affect growth performance, serum antioxidant ability and tissue selenium retention in Wistar Rats. Chin J Anim Nutr 24(7):1311–1319

    CAS  Google Scholar 

  41. Zheng LY, Zhang Q, Liu BT, Guo k, Yu WL, Liu ZW (2013) Effect of different dietary selenium concentration on mRNA levels of some selenoprotein in mice liver and testis. China Anim Husb Vet Med 40(3):38–42

    CAS  Google Scholar 

  42. Zhao CY, Ren JH, Xue CG (1993) Selenium in soils of selenium-rich areas in Ziyang country. Acta Pedologica Sin 30(3):253–259

    CAS  Google Scholar 

  43. Kieliszek M, Błażejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 5(29):713–718

    Google Scholar 

  44. Luo X, Wei H, Yang C, Xing J, Liu X, Qiao C, Feng Y, Liu J, Liu Y, Wu Q (1985) Bioavailability of selenium to residents in a low-selenium area of China. Am J Clin Nutr 42(3):439–448

    PubMed  CAS  Google Scholar 

  45. Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. J Am Med Assoc 276(24):1957–1963

    CAS  Google Scholar 

  46. Fordyce F, Guangdi Z, Green K, Xinping L (2000) Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Appl Geochem 15(1):117–132

    CAS  Google Scholar 

  47. Hawkes WC, Kelley DS, Taylor PC (2001) The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res 81(3):189–213

    PubMed  CAS  Google Scholar 

  48. Humann-Ziehank E, Renko K, Mueller AS, Roehrig P, Wolfsen J, Ganter M (2013) Comparing functional metabolic effects of marginal and sufficient selenium supply in sheep. J Trace Elem Med Biol. doi:10.1016/j.jtemb, 2013.03.003(Published online)

    Google Scholar 

  49. Jianhua H, Ohtsuka A, Hayashi K (2000) Selenium influences growth via thyroid hormone status in broiler chickens. Br J Nutr 84(5):727–732

    PubMed  CAS  Google Scholar 

  50. Qin S, Gao J, Huang K (2007) Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol Trace Elem Res 116(1):91–102

    PubMed  CAS  Google Scholar 

  51. Davis P, McDowell L, Wilkinson N, Buergelt C, Van Alstyne R, Weldon R, Marshall T, Matsuda-Fugisaki E (2008) Comparative effects of various dietary levels of Se as sodium selenite or Se yeast on blood, wool, and tissue Se concentrations of wether sheep. Small Rumin Res 74(1):149–158

    Google Scholar 

  52. Juniper D, Bertin G (2013) Effects of dietary selenium supplementation on tissue selenium distribution and glutathione peroxidase activity in Chinese ring necked pheasants. Animal 7(4):562–570

    PubMed  CAS  Google Scholar 

  53. Pan CL (2008) The application of organic selenium source in hen production and research for the mechanism. Doctoral dissertation, Nanjing Agrieultural University

  54. Echevarria M, Henry P, Ammerman C, Rao P (1988) Effects of time and dietary selenium concentration as sodium selenite on tissue selenium uptake by sheep. J Anim Sci 66(9):2299–2305

    PubMed  CAS  Google Scholar 

  55. Tarla F, Henry P, Ammerman C, Rao P, Miles R (1991) Effect of time and sex on tissue selenium concentrations in chicks fed practical diets supplemented with sodium selenite or calcium selenite. Biol Trace Elem Res 31(1):11–20

    PubMed  CAS  Google Scholar 

  56. Bermano G, Nicol F, Dyer J, Sunde R, Beckett G, Arthur J, Hesketh J (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311:425–430

    PubMed  CAS  Google Scholar 

  57. Flohe L (2007) Selenium in mammalian spermiogenesis. Biol Chem 388(10):987–995

    PubMed  CAS  Google Scholar 

  58. Schomburg L, Schweizer U (2009) Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophysi Acta (BBA) Gen Subj 1790(11):1453–1462

    CAS  Google Scholar 

  59. Tato RR, Cárdenas VE, Herrero HE (1994) Selenium: the physiopathological and clinical implications. An Med Interna 11(9):457–463

    Google Scholar 

  60. Baek IJ, Seo DS, Yon JM, Lee SR, Jin Y, Nahm SS, Jeong JH, Choo YK, Kang JK, Lee BJ (2007) Tissue expression and cellular localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA in male mice. J Mol Histol 38(3):237–244

    PubMed  CAS  Google Scholar 

  61. Auger J, Yang W, Arnault I, Pannier F, Potin Gautier M (2004) High-performance liquid chromatographic–inductively coupled plasma mass spectrometric evidence for Se-“alliins” in garlic and onion grown in Se-rich soil. J Chromatogr A 1032:103–107

    PubMed  CAS  Google Scholar 

  62. Xie M, von Bohlen A, Klockenkämper R, Jian X, Günther K (1998) Multi-element analysis of Chinese tea (Camellia sinensis) by total-reflection X-ray fluorescence. Z Leb Unters Forsch A 207(1):31–38

    CAS  Google Scholar 

  63. Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione-peroxidase and phospholipid hydroperoxide glutathione-peroxidase are differentially regulated in rats by dietary seleniun. J Nutr 125(6):1438–1446

    PubMed  CAS  Google Scholar 

  64. Brigelius FR (2006) Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387(10–11):1329–1335

    Google Scholar 

  65. Modrick ML, Didion SP, Lynch CM, Dayal S, Lentz SR, Faraci FM (2009) Role of hydrogen peroxide and the impact of glutathione peroxidase-1 in regulation of cerebral vascular tone. J Cereb Blood Flow Metab 29(6):1130–1137

    PubMed  CAS  Google Scholar 

  66. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14(11):495–502

    PubMed  CAS  Google Scholar 

  67. Thu VT, Kim HK, Ha SH, Yoo JY, Park WS, Kim N, Oh GT, Han J (2010) Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts. Pflügers Archiv Eur J Physiol 460(1):55–68

    CAS  Google Scholar 

  68. Sunde RA, Raines AM, Barnes KM, Evenson JK (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29(5):329–338

    PubMed  CAS  Google Scholar 

  69. Fukuhara R, Kageyama T (2003) Tissue distribution, molecular cloning, and gene expression of cytosolic glutathione peroxidase in Japanese monkey. Zool Sci 20(7):861–868

    PubMed  CAS  Google Scholar 

  70. Fukuhara R, Kageyama T (2005) Structure, gene expression, and evolution of primate glutathione peroxidases. Comp Biochem Physiol B Biochem Mol Biol 141(4):428–436

    PubMed  Google Scholar 

  71. Munz B, Frank S, Hubner G, Olsen E, Werner S (1997) A novel type of glutathione peroxidase: expression and regulation during wound repair. Biochem J 326:579–585

    PubMed  CAS  Google Scholar 

  72. Himeno S, Takekawa A, Imura N (1993) Species difference in hydroperoxide-scavenging enzymes with special reference to glutathione peroxidase in guinea-pigs. Comp Biochem Physiology Part B Comp Biochem 104(1):27–31

    CAS  Google Scholar 

  73. Evenson JK, Wheeler AD, Blake SM, Sunde RA (2004) Selenoprotein mRNA is expressed in blood at levels comparable to major tissues in rats. J Nutr 134(10):2640–2645

    PubMed  CAS  Google Scholar 

  74. Jiang L, Wu ZM, Lu AX (2012) Effects of organic selenium sources on growth performance and antioxidant capability in young rex rabbits. Chin J Anim Sci 48(17):27–31

    Google Scholar 

  75. Hemingway R (2003) The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep. Vet Res Commun 27(2):159–174

    PubMed  CAS  Google Scholar 

  76. Weiss SL (1996) The selenium requirement for glutathione peroxidase mRNA level is half of the selenium requirement for glutathione peroxidase activity in female rats1,2,3. Nutr Requir Interact 126(9):2260–2267

    CAS  Google Scholar 

  77. Barnes KM, Evenson JK, Raines AM, Sunde RA (2009) Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity. J Nutr 139(2):199–206

    PubMed  CAS  Google Scholar 

  78. Hill KE, Reid Lyons P, Burk RF (1992) Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Commun 185(1):260–263

    PubMed  CAS  Google Scholar 

  79. Lum GE, Rowntree JE, Bondioli KR, Southern LL, Williams CC (2009) The influence of dietary selenium on common indicators of selenium status and liver glutathione peroxidase-1 mRNA. J Anim Sci. doi:10.2527/jas, 2008-1417(Published online)

    PubMed  Google Scholar 

  80. Moriarty PM, Reddy CC, Maquat LE (1998) Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol Cell Biol 18(5):2932–2939

    PubMed  CAS  Google Scholar 

  81. Banning A, Florian S, Deubel S, Thalmann S, Müller-Schmehl K, Jacobasch G, Brigelius-Flohé R (2008) GPx2 counteracts PGE2 production by dampening COX-2 and mPGES-1 expression in human colon cancer cells. Antioxid Redox Signal 10(9):1491–1500

    PubMed  CAS  Google Scholar 

  82. Brigelius-Flohé R, Kipp A (2009) Glutathione peroxidases in different stages of carcinogenesis. BiochimBiophys Acta (BBA) Gen Subj 1790(11):1555–1568

    Google Scholar 

  83. Al-Taie OH, Uceyler N, Eubner U, Jakob F, Mork H, Scheurlen M, Brigelius-Flohe R, Schottker K, Abel J, Thalheimer A (2004) Expression profiling and genetic alterations of the selenoproteins GI-GPx and SePP in colorectal carcinogenesis. Nutr Cancer 48(1):6–14

    PubMed  CAS  Google Scholar 

  84. Naiki-Ito A, Asamoto M, Hokaiwado N, Takahashi S, Yamashita H, Tsuda H, Ogawa K, Shirai T (2007) Gpx2 is an overexpressed gene in rat breast cancers induced by three different chemical carcinogens. Cancer Res 67(23):11353–11358

    PubMed  CAS  Google Scholar 

  85. Banning A, Kipp A, Schmitmeier S, Löwinger M, Florian S, Krehl S, Thalmann S, Thierbach R, Steinberg P, Brigelius-Flohé R (2008) Glutathione peroxidase 2 inhibits cyclooxygenase-2–mediated migration and invasion of HT-29 adenocarcinoma cells but supports their growth as tumors in nude mice. Cancer Res 68(23):9746–9753

    PubMed  CAS  Google Scholar 

  86. Walshe J, Serewko-Auret MM, Teakle N, Cameron S, Minto K, Smith L, Burcham PC, Russell T, Strutton G, Griffin A (2007) Inactivation of glutathione peroxidase activity contributes to UV-induced squamous cell carcinoma formation. Cancer Res 67(10):4751–4758

    PubMed  CAS  Google Scholar 

  87. Chu FF, Esworthy RS, Chu PG, Longmate JA, Huycke MM, Wilczynski S, Doroshow JH (2004) Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res 64(3):962–968

    PubMed  CAS  Google Scholar 

  88. Esworthy RS, Yang L, Frankel PH, Chu FF (2005) Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. J Nutr 135(4):740–745

    PubMed  CAS  Google Scholar 

  89. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Presented at Proceedings-nutrition Society of London, Cambridge Univ Press: 527

  90. Pagmantidis V, Bermano G, Villette S, Broom I, Arthur J, Hesketh J (2005) Effects of Se-depletion on glutathione peroxidase and selenoprotein W gene expression in the colon. Febs Lett 579(3):792–796

    PubMed  CAS  Google Scholar 

  91. Wingler K, Bocher M, Flohe L, Kollmus H, Brigelius-Flohe R (1999) mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur J Biochem 259(1–2):149–157

    PubMed  CAS  Google Scholar 

  92. Brigelius FR, Müller C, Menard J, Florian S, Schmehl K, Wingler K (2001) Functions of GI-GPx: lessons from selenium-dependent expression and intracellular localization. Biofactors 14(1):101–106

    Google Scholar 

  93. Yu Y, Lv L, Zhang YY, Luo XG (2007) Regulation of selenium on gene expression and enzyme activity in selenoproteins gluthathione peroxidas. Chin J Anim Nutr 19:469–474

    CAS  Google Scholar 

  94. Mistry H, Kurlak L, Williams P, Ramsay M, Symonds M, Broughton Pipkin F (2010) Differential expression and distribution of placental glutathione peroxidases 1, 3 and 4 in normal and preeclamptic pregnancy. Placenta 31(5):401–408

    PubMed  CAS  Google Scholar 

  95. Comhair SA, Erzurum SC (2005) The regulation and role of extracellular glutathione peroxidase. Antioxid Redox Signal 7(1–2):72–79

    PubMed  CAS  Google Scholar 

  96. Falck E, Karlsson S, Carlsson J, Helenius G, Karlsson M, Klinga LK (2010) Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma. Cancer Cell Int 10(46):1–9

    Google Scholar 

  97. Taulli R, Scuoppo C, Bersani F, Accornero P, Forni PE, Miretti S, Grinza A, Allegra P, Schmitt NM, Crepaldi T (2006) Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 66(9):4742–4749

    PubMed  CAS  Google Scholar 

  98. Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE, Gibbs JB, Pan BS (2007) Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 67(5):2081–2088

    PubMed  CAS  Google Scholar 

  99. Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM (2001) Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153(5):1023–1034

    PubMed  CAS  Google Scholar 

  100. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, Lubensky I, Neumann HP, Brauch H, Decker J (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18(14):2343–2350

    PubMed  CAS  Google Scholar 

  101. Avissar N, Slemmon JR, Palmer IS, Cohen HJ (1991) Partial sequence of human plasma glutathione peroxidase and immunologic identification of milk glutathione peroxidase as the plasma enzyme. J Nutr 121(8):1243–1249

    PubMed  CAS  Google Scholar 

  102. Avissar N, Eisenmann C, Breen JG, Horowitz S, Miller RK, Cohen HJ (1994) Human placenta makes extracellular glutathione peroxidase and secretes it into maternal circulation. Am J Physiol Endocrinol Metab 267(1):68–76

    Google Scholar 

  103. Comhair SA, Bhathena PR, Farver C, Thunnissen FB, Eraurum SC (2001) Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB Journal 15(1):70–78

    PubMed  CAS  Google Scholar 

  104. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K (1997) Analysis of an expression profile of genes in the human adipose tissue. Gene 190(2):227–235

    PubMed  CAS  Google Scholar 

  105. Whitin JC, Bhamre S, Tham DM, Cohen HJ (2002) Extracellular glutathione peroxidase is secreted basolaterally by human renal proximal tubule cells. Am J Physiol Ren Physiol 283(1):20–28

    Google Scholar 

  106. Avissar N, Kerl E, Baker S, Cohen H (1994) Extracellular glutathione peroxidase mRNA and protein in human cell lines. Arch Biochem Biophys 309(2):239–246

    PubMed  CAS  Google Scholar 

  107. Martín Alonso JM, Ghosh S, Coca PM (1993) Cloning of the bovine plasma selenium-dependent glutathione peroxidase (GPx) cDNA from the ocular ciliary epithelium: expression of the plasma and cellular forms within the mammalian eye. J Biochem 114(2):284–291

    PubMed  Google Scholar 

  108. Yoshimura S, Watanabe K, Suemizu H, Onozawa T, Mizoguchi J, Tsuda K, Hatta H, Moriuchi T (1991) Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J Biochem 109(6):918–923

    PubMed  CAS  Google Scholar 

  109. Kingsley PD, Whitin JC, Cohen HJ, Palis J (1998) Developmental expression of extracellular glutathione peroxidase suggests antioxidant roles in deciduum, visceral yolk sac, and skin. Mol Reprod Dev 49(4):343–355

    PubMed  CAS  Google Scholar 

  110. Maser RL, Magenheimer BS, Calvet JP (1994) Mouse plasma glutathione peroxidase, cDNA sequence analysis and renal proximal tubular expression and secretion. J Biol Chem 269(43):27066–27073

    PubMed  CAS  Google Scholar 

  111. Nakane T, Asayama K, Kodera K, Hayashibe H, Uchida N, Nakazawa S (1998) Effect of selenium deficiency on cellular and extracellular glutathione peroxidases: Immunochemical detection and mRNA analysis in rat kidney and serum. Free Radic Biol Med 25(4–5):504–511

    PubMed  CAS  Google Scholar 

  112. Ottaviano FG, Tang SS, Handy DE, Loscalzo J (2009) Regulation of the extracellular antioxidant selenoprotein plasma glutathione peroxidase (GPx-3) in mammalian cells. Mol Cell Biochem 327(1–2):111–126

    PubMed  CAS  Google Scholar 

  113. Raines AM, Sunde RA (2011) Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents. BMC Genomics 12:26. doi:10.1186/1471-2164-12-26, Published online

    PubMed  CAS  Google Scholar 

  114. Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12(5):408–416

    PubMed  CAS  Google Scholar 

  115. Shen QC, Fan L, Newburger PE (2006) Nuclease sensitive element binding protein 1 associates with the selenocysteine insertion sequence and functions in mammalian selenoprotein translation. J Cell Physiol 207(3):775–783

    PubMed  CAS  Google Scholar 

  116. Bierl C, Voetsch B, Jin RC, Handy DE, Loscalzo J (2004) Determinants of human plasma glutathione peroxidase (GPx-3) expression. J Biol Chem 279(26):26839–26845

    PubMed  CAS  Google Scholar 

  117. Driscoll DM, Copeland PR (2003) Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 23:17–40

    PubMed  CAS  Google Scholar 

  118. Arthur J (2001) The glutathione peroxidases. Cell Mol Life Sci 57(13–14):1825–1835

    Google Scholar 

  119. Bellinger F, Raman A, Reeves M, Berry M (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    PubMed  CAS  Google Scholar 

  120. Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9):951–965

    PubMed  Google Scholar 

  121. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34(2):145–169

    PubMed  CAS  Google Scholar 

  122. Liang H, Remmen HV, Frohlich V, Lechleiter J, Richardson A, Ran Q (2007) Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem Biophys Res Commun 356(4):893–898

    PubMed  CAS  Google Scholar 

  123. Cole EP, Swan D, Shanley D, Hesketh J (2012) Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells. Free Radic Biol Med 53(3):488–497

    Google Scholar 

  124. Godeas C, Tramer F, Micali F, Roveri A, Maiorino M, Nisii C, Sandri G, Panfili E (1996) Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin. Biochem Mol Med 59(2):118–124

    PubMed  CAS  Google Scholar 

  125. Roveri A, Casasco A, Maiorino M, Dalan P, Calligaro A, Ursini F (1992) Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification. J Biol Chem 267(9):6142–6146

    PubMed  CAS  Google Scholar 

  126. Chen W, Du JF, Cui QM, Cheng QM, Hu YX, Yang L, Zeng YQ (2011) Tissue expression profiles of GPx4 gene in Laiwu pigs. J Shandong Agric Univ (Nat Sci) 42(3):433–437

    Google Scholar 

  127. Sunde RA, Hadley KB (2010) Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Exp Biol Med 235(1):23–31

    CAS  Google Scholar 

  128. Zoidis E, Pappas A, Georgiou C, Komaitis Ε, Feggeros K (2010) Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comp Biochem Physiol B Biochem Mol Biol 155(3):294–300

    PubMed  CAS  Google Scholar 

  129. Yin J, Yang G, He T, Luo YH, Fang RJ (2012) Advances in Se- enriched yeast on poultry nutrition. Chin J Anim Sci 48(1):63–66

    Google Scholar 

Download references

Acknowledgments

This study was supported by the technology system of national modern mutton industry of China (nycytx-39). The authors thank the members in Animal Husbandry Bureau of Ziyang County for their help in collecting the tissue samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-qin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhou, Zq., Li, G. et al. The Effect of Deposition Se on the mRNA Expression Levels of GPxs in Goats from a Se-enriched County of China. Biol Trace Elem Res 156, 111–123 (2013). https://doi.org/10.1007/s12011-013-9830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9830-5

Keywords

Navigation