Skip to main content

Role of Zinc in the Regulation of Autophagy During Ethanol Exposure in Human Hepatoma Cells


Faulty autophagy has been linked to various diseases including neurodegenerative disorders, diabetes, and cancer. Increasing evidence support the notion that activation of autophagy protects against ethanol-induced steatosis and liver injury. Herein, we investigated the role of zinc in autophagy in human hepatoma cells VL-17A exposed or not to ethanol. LC3II/LC3I ratio, p62, and Beclin-1 expression and autophagosomes number were determined in cells incubated in medium containing various concentrations of zinc with or without ethanol. In addition, labile zinc and mRNA expression of metallothionein and the zinc transporters SLC39A8, SLC39A14, and SLC30A10 were evaluated in cells exposed to ethanol and the autophagy inhibitor 3-methyladenine. Zinc depletion caused a significant suppression of autophagy in cells. Conversely, zinc addition to medium stimulated autophagy in cells. Moreover, cotreatment with ethanol and excess zinc (40 μM) had an additive effect on the induction of autophagy. 3-methyadenine treatment decreased labile zinc, but this effect was more pronounced in cells exposed to ethanol. Lastly, ethanol and 3-methyladenine caused significant changes in the expression of metallothionein and zinc transporters. The results from this study support the hypothesis that zinc is critical for autophagy under basal conditions and during ethanol exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Chen Y, Klionsky DJ (2011) The regulation of autophagy—unanswered questions. J Cell Sci 124(Pt 2):161–170

    PubMed  Article  CAS  Google Scholar 

  2. Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P (2012) Autophagy: for better or for worse. Cell Res 22:43–61

    PubMed  Article  CAS  Google Scholar 

  3. Ding WX, Li M, Chen X, Ni HM, Lin CW, Gao W, Lu B, Stolz DB, Clemens DL, Yin XM (2010) Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139:1740–1752

    PubMed  Article  CAS  Google Scholar 

  4. Thomes PG, Trambly CS, Thiele GM, Duryee MJ, Fox HS, Haorah J, Donohue TM Jr (2012) Proteasome activity and autophagosome content in liver are reciprocally regulated by ethanol treatment. Biochem Biophys Res Commun 417:262–267

    PubMed  Article  CAS  Google Scholar 

  5. Zeng T, Zhang CL, Song FY, Zhao XL, Yu LH, Zhu ZP, Xie KQ (2012) PI3K/Akt pathway activation was involved in acute ethanol-induced fatty liver in mice. Toxicology 296:56–66

    PubMed  Article  CAS  Google Scholar 

  6. Yang L, Wu D, Wang X, Cederbaum AI (2012) Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver. Free Radic Biol Med 53:1170–1180

    PubMed  Article  CAS  Google Scholar 

  7. Hwang JJ, Kim HN, Kim J, Cho DH, Kim MJ, Kim YS, Kim Y, Park SJ, Koh JY (2010) Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23:997–1013

    PubMed  Article  CAS  Google Scholar 

  8. Lee SJ, Park MH, Kim HJ, Koh JY (2010) Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58:1186–1196

    PubMed  Article  Google Scholar 

  9. Kim KW, Speirs CK, Jung DK, Lu B (2011) The zinc ionophore PCI-5002 radiosensitizes non-small cell lung cancer cells by enhancing autophagic cell death. J Thorac Oncol 6:1542–1552

    PubMed  Article  Google Scholar 

  10. Zhou Z, Wang L, Song Z, Saari JT, McClain CJ, Kang YJ (2005) Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am J Pathol 166:1681–1690

    PubMed  Article  CAS  Google Scholar 

  11. Ho E, Courtemanche C, Ames BN (2003) Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J Nutr 133:2543–2548

    PubMed  CAS  Google Scholar 

  12. Wu D, Wang X, Zhou R, Yang L, Cederbaum AI (2012) Alcohol steatosis and cytotoxicity: the role of cytochrome P4502E1 and autophagy. Free Radic Biol Med 53:1346–1357

    PubMed  Article  CAS  Google Scholar 

  13. Tanida I, Yamaji T, Ueno T, Ishiura S, Kominami E, Hanada K (2008). Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls. Autophagy 4:131–4

    Google Scholar 

  14. Osna NA, Clemens DL, Donohue TM Jr (2003) Interferon gamma enhances proteasome activity in recombinant Hep G2 cells that express cytochrome P4502E1: modulation by ethanol. Biochem Pharmacol 66:697–710

    PubMed  Article  CAS  Google Scholar 

  15. Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    PubMed  CAS  Google Scholar 

  16. Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  17. Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI (2005) Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H(2)O(2). Antioxid Redox Signal 7:1773–1782

    PubMed  Article  CAS  Google Scholar 

  18. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo. J Biol Chem 270:27489–27494

    PubMed  Article  CAS  Google Scholar 

  19. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    PubMed  Article  CAS  Google Scholar 

  20. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Adeymir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute phase response. Proc Natl Acad Sci U S A 102:6843–6848

    PubMed  Article  CAS  Google Scholar 

  21. Zhao N, Gao J, Enns CA, Knutson MD (2010) ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem 285(42):32141–32150

    PubMed  Article  CAS  Google Scholar 

  22. Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T (2002) Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. Genomics 80:630–645

    PubMed  Article  CAS  Google Scholar 

  23. Bosomworth HJ, Thornton JK, Coneyworth LJ, Ford D, Valentine RA (2012) Efflux function, tissue-specific expression, and intracellular trafficking of the Zn transporter ZnT10 indicate roles in adult Zn homeostasis. Metallomics 4:771–779

    PubMed  Article  CAS  Google Scholar 

  24. Kelleher SL, Velasquez V, Croxford TP, McCormick NH, Lopez V, MacDavid J (2012) Mapping the zinc-transporting system in mammary cells: molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation. J Cell Physiol 227:1761–1770

    PubMed  Article  CAS  Google Scholar 

  25. Van der Vaart A, Reggiori F (2010) The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6:800–801

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. P. Liuzzi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.


(DOC 69 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liuzzi, J.P., Yoo, C. Role of Zinc in the Regulation of Autophagy During Ethanol Exposure in Human Hepatoma Cells. Biol Trace Elem Res 156, 350–356 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Zinc
  • Autophagy
  • Ethanol