Skip to main content
Log in

Effect of Feeding Inorganic Chromium on Growth Performance, Endocrine Variables, and Energy Metabolites in Winter-Exposed Buffalo Calves (Bubalus bubalis)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We investigated the effect of chromium (Cr) supplementation on the growth performance, energy metabolites, and hormonal variation in winter-exposed buffalo calves. Twenty-four female buffalo calves were randomly allotted to four dietary treatments (n = 6) for a period of 120 days. Feeding regimen was the same in all the groups, except the animals in the four respective groups were additionally supplemented with 0.0, 0.5, 1.0, and 1.5 mg of Cr/kg DM in the form of CrCl3.6H2O. Calves were monitored daily for physiological variables and dry matter intake (DMI). Blood samples were collected at fortnightly intervals from each buffalo calves to measure concentrations of hormones (insulin, cortisol, and growth hormone), energy metabolites (glucose and non-esterified fatty acids), and plasma mineral levels. After 120 days of feeding trial, buffalo calves fed with Cr had lower (P < 0.05) circulating plasma concentrations of glucose, insulin, and cortisol hormones, whereas plasma thyroid hormone and non-esterified fatty acids concentrations were found similar (P > 0.05) among all the treatments. The results suggested that dietary Cr supplementation influenced plasma Cr levels without affecting the plasma concentrations of other trace minerals. However, physiological variables, nutrient intake, and growth performance of buffalo calves did not differ among all treatments (P > 005). In summary, the current study showed that supplementation of Cr at the level of 1.0 and 1.5 mg of Cr/kg DMI was more effective in improving glucose utilization by increasing potency of insulin hormone and reducing concentration of cortisol hormone. Results also suggested that supplemental Cr also improves blood plasma Cr levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kennedy PM, Christopherson RJ, Milligan LP (1976) The effect of cold exposure of sheep on digestion, rumen turnover time, and efficiency of microbial synthesis. Br J Nutr 36:231–242

    Article  PubMed  CAS  Google Scholar 

  2. Young BA, Walker B, Dixon AE, Walker VA (1989) Physiological adaptation to the environment. J Anim Sci 67:2426–2432

    PubMed  CAS  Google Scholar 

  3. Swenson MJ, Reece WO, Cornell Kelmm WR (1993) Duke’s physiology of domestic animals. 11th edn. London, pp 908- 925

  4. McDonald RB, Florez-Duquet M, Murtagh-Mark C, Horwitz BA (1996) Relationship between cold-induced thermoregulation and spontaneous rapid body weight loss of aging F344 rats. Am J Physiol 40:1115–1122

    Google Scholar 

  5. Frank JW, Carroll JA, Allee GL, Zannelli ME (2003) The effects of thermal environment and spray-dried plasma on the acute-phase response of pigs challenged with lipopolysaccharide. J Anim Sci 81:1166–1176

    PubMed  CAS  Google Scholar 

  6. Kim BG, Lindemann MD, Cromwell GL (2009) The effects of dietary chromium (III) picolinate on growth performance, blood measurements, and respiratory rate in pigs kept in high and low ambient temperature. J Anim Sci 87:1695–1704

    Article  PubMed  CAS  Google Scholar 

  7. Offenbacher KG, Rinko CJ, Pi-Sunyer X (1986) The effects of inorganic chromium and brewer's yeast on glucose tolerance, plasma lipids and plasma chromium in elderly subjects. Am J Clin Nutr 42:454–461

    Google Scholar 

  8. National Research Council (1997) The role of chromium in animal nutrition. National Academy, Washington, DC

    Google Scholar 

  9. Vincent JB (2000) The biochemistry of chromium. J Nutr 130:715–718

    PubMed  CAS  Google Scholar 

  10. Anderson RA (2000) Chromium in the prevention and control of diabetes. Diabetes Metab 26:22–27

    PubMed  CAS  Google Scholar 

  11. Kim DS, Kim TW, Kang JS (2004) Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Bio 17:243–247

    Article  CAS  Google Scholar 

  12. Tuzcu A, Bahceci M, Dursun M, Parmaksiz Y, Ertem M, Dalgic A, Turgut C, Kale E (2004) Can long-term exposure to chromium improve insulin sensitivity in chromium mine workers. J Trace Elem Exp Med 17:55–63

    Article  CAS  Google Scholar 

  13. Kearl LC (1982) Nutrient requirements of ruminants in developing countries. International feed stuffs institute. Utah Agriculture Experimental Station. Utah State University, Logon, Utah, pp 45–58

    Google Scholar 

  14. Hafez ESE (1967) . Adaptation of domestic animals. Philadelphia

  15. McDowell RE, Hooven NW, Camoens JK (1976) Effect of climate on performance of Holsteins in first lactation. J Dairy Sci 59(5):965–973

    Article  Google Scholar 

  16. Association of Official Analytical Chemists (1995). Official methods of analysis. 16th edn. Arlington,Virginia

  17. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:358–397

    Google Scholar 

  18. Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  PubMed  CAS  Google Scholar 

  19. Shipe WF, Senyk GF, Fountain KB (1980) Modified copper soap solvent extraction method for measuring free fatty acids in milk. J Dairy Sci 63:193–198

    Article  CAS  Google Scholar 

  20. Fuquay JW (1981) Heat-stress as it affects animal production. J Anim Sci 52(1):164–174

    PubMed  CAS  Google Scholar 

  21. Srikandakumar A, Johnson EH, Mahgoub O (2003) Effect of heat stress on respiratory rate, rectal temperature, and blood chemistry in Omani and Australian Merino sheep. Small Rumin Res 49:193–198

    Article  Google Scholar 

  22. Reece WO (2004) Dukes' physiology of domestic animals, 12th edn. Comstock Publishing Cornell University Press

  23. Nikkhah A, Mirzaei M, Khorvash M, Rahmani HR, Ghorbani GR (2011) Chromium improves production and alters metabolism of early lactation cows in summer A. J Anim Physiol Anim Nutr 95:81–89

    Article  CAS  Google Scholar 

  24. Ghorbani A, Sadri H, Alizadeh AR, Bruckmaier RM (2012) Performance and metabolic responses of Holstein calves to supplemental chromium in colostrum and milk. J Dairy Sci 95(10):5760–5769

    Article  PubMed  CAS  Google Scholar 

  25. Kegley EB, Spears JW (1995) Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. J Anim Sci 73:2721–2726

    PubMed  CAS  Google Scholar 

  26. Besong S, Jackson J, Trammell D, Akay V (2001) Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites, and rumen VFA profile in steers fed a moderately high fat diet. J Dairy Sci 84:1679–1685

    Article  PubMed  CAS  Google Scholar 

  27. Swanson KC, Harmon DL, Jacques KA, Larson BT, Richards CJ, Bohnert DW, Paton SJ (2000) Efficacy of chromium-yeast supplementation for growing beef steers. Anim Feed Sci Technol 86:95–105

    Article  CAS  Google Scholar 

  28. Depew CL, Bunting LD, Thompson DL Jr, Gantt DT (1996) Chromium picolinate does not alter intake or lipid metabolism in lambs fed standard or high-fat diets (Abstract). J Dairy Sci 79(1):140

    Article  Google Scholar 

  29. Forbes CD, Fernandez JM, Bunting LD, Southern LL, Thompson DL, Gentry LR, Chapa AM (1998) Growth and metabolic characteristics of Suffolk and Gulf Coast Native Yearling ewes supplemented with chromium tripicolinate. Small Ruminant Res 28:149–160

    Article  Google Scholar 

  30. Kegley EB, Galloway DL, Fakler TM (2000) Effect of dietary chromium-L-methionine on glucose metabolism of beef steers. J Anim Sci 78:3177–3183

    PubMed  CAS  Google Scholar 

  31. Kitchalong L, Fernandez JM, Bunting LD, Southern LL, Bidner TD (1995) Influence of chromium tripicolinate on glucose metabolism and nutrient partitioning in growing lambs. J Anim Sci 73:2694–2704

    PubMed  CAS  Google Scholar 

  32. Gentry LR, Fernandez JM, Ward TL, White TW, Southern LL, Thompson DL, Horohov DW, Chapa AM, Sahlu T (1999) Dietary protein and chromium tripicolinate in Suffolk wether lambs: effects on production characteristics, metabolic and hormonal responses and immune status. J Anim Sci 77:1284–1294

    PubMed  CAS  Google Scholar 

  33. Lee DN, Weng CF, Yen HT, Shen TF, Chen BJ (2000) Effects of chromium supplementation and lipopolysaccharide injection on physiological responses of weanling pigs. Asian Aust J Anim Sci 13:528–534

    CAS  Google Scholar 

  34. Gang X, Xu Z, Wu S, Chen S (2001) Effect of chromium picolinate on growth performance, carcass characteristics, serum metabolites, and metabolism of lipid in pigs. Asian Aust J Anim Sci 14:258–262

    Google Scholar 

  35. Lien TF, Yang KH, Link KJ (2005) Effects of chromium propionate supplementation on growth performance, serum traits, and immune response in weaned pigs. Asian Aust J Anim Sci 18:403–408

    CAS  Google Scholar 

  36. Kegley EB, Spears JW, Eisemann JH (1997) Performance and glucose metabolism in calves fed a chromium nicotinic acid complex or chromium chloride. J Dairy Sci 80:1744–1750

    Article  PubMed  CAS  Google Scholar 

  37. Van Heugten E, Spears JW (1997) Immune response and growth of stressed weanling pigs fed diets supplemented with organic or inorganic forms of chromium. J Anim Sci 75:409–416

    PubMed  Google Scholar 

  38. Hayirli A, Bremmer DR, Bertics SJ, Socha MT, Grummer RR (2001) Effect of chromium supplementation on production and metabolic parameters in periparturient dairy cows. J Dairy Sci 84:1218–1230

    Article  PubMed  CAS  Google Scholar 

  39. Bernhard BC, Burdick NC, Rathmann RJ, Carroll JA, Finck DN, Jennings MA, Young TR, Johnson BJ (2012) Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period. J Anim Sci 90:4857–4865

    Article  PubMed  CAS  Google Scholar 

  40. Chang X, Mowat DN, Mallard BA (1995) Supplemental chromium and niacin for stressed feeder calves. Can J Anim Sci 75:351–358

    Article  Google Scholar 

  41. Mowat DN, Chang X, Yang WZ (1993) Chelated chromium for stressed feeder calves. Can J Anim Sci 73:49–55

    Article  CAS  Google Scholar 

  42. Al-Saiadi MY, Al-Shaikh MA, Al-Mofarrej SI, Al-Showeimi TA, Mogawer HH, Dirrar A (2004) Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Anim Feed Sci Technol 117:223–233

    Article  Google Scholar 

  43. Debski B, Zalewski W, Gralak AM (2001) Effect of different dietary chromium sources on broilers glycogen and glucose level. In: Anke M, Muller R, Schafer U (eds) Mineralstoffe, Mengen-, Spuren-, und Ultraspurenelemente in der Prävention. Wiss Verlag, Stuttgart, pp 302–308

    Google Scholar 

  44. Bunting LD, Fernandez JM, Thompson DL, Southern LL (1994) Influence of chromium picolinate on glucose usage and metabolic criteria in growing Holstein calves. J Anim Sci 72:1591–1599

    PubMed  CAS  Google Scholar 

  45. Sano H, Konno S, Shiga A (2000) Chromium supplementation does not influence glucose metabolism or insulin action in response to cold exposure in mature sheep. J Anim Sci 78:2950–2956

    PubMed  CAS  Google Scholar 

  46. Chang X, Mowat DN (1992) Supplemental chromium for stressed and growing feeder calves. J Anim Sci 70:559–565

    PubMed  CAS  Google Scholar 

  47. Yang WZ, Mowat DN, Subiyatno A, Liptrap RM (1996) Effects of chromium supplementation on early lactation performance of Holstein cows. Can J Anim Sci 76:221–230

    Article  CAS  Google Scholar 

  48. Sumner JM, Valdez F, McNamara JP (2007) Effects of chromium propionate on response to an intravenous glucose tolerance test in growing Holstein heifers. J Dairy Sci 90:3467–3474

    Article  PubMed  CAS  Google Scholar 

  49. Stahlhut HS, Whisnant CS, Lloyd KE, Baird EJ, Legleiter LR, Hansen SL, Spears JW (2006) Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Anim Feed Sci Technol 128:253–265

    Article  CAS  Google Scholar 

  50. Bryan MA, Socha MT, Tomlinson DJ (2004) Supplementing intensively grazed late gestation and early lactation dairy cattle with chromium. J Dairy Sci 87:4269–4277

    Article  PubMed  CAS  Google Scholar 

  51. Subiyatno A, Mowat DN, Yang WZ (1996) Metabolite and hormonal responses to glucose or propionate infusions in periparturient dairy cows supplemented with chromium. J Dairy Sci 79:1436–1445

    Article  PubMed  CAS  Google Scholar 

  52. Lien TF, Horng YM, Yang KH (1999) Performance, serum characteristics, carcase traits, and lipid metabolism of broilers as affected by supplement of chromium picolinate. Br Poult Sci 40:357–363

    Article  PubMed  CAS  Google Scholar 

  53. Haldar S, Mondal S, Samanta S, Ghosh TK (2009) Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against peste des petits ruminants in dwarf Bengal goats (Capra hircus). Animal 3(2):209–217

    Google Scholar 

  54. Davis CM, Vincent JB (1997) Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Arch Biochem Biophys 339:335–343

    Article  PubMed  CAS  Google Scholar 

  55. Anderson RA (1994) Stress effects on chromium nutrition of humans and farm animals. Biotechnology in the Feed Industry. In: Lyons TP, Jacques KA (eds) Proceedings of Alltech’s Tenth Annual Symposium. Nottingham University Press, UK, pp 267–274

    Google Scholar 

  56. Morris BW, Gray TA, MacNeil S (1993) Glucose-dependent uptake of chromium in human and rat insulin sensitive tissues. Clin Chem 84:477–482

    CAS  Google Scholar 

  57. Kafilzadeh F, Karami Shabankareh H, Targhibi MR (2012) Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biol Trace Elem Res 149(1):42–49

    Article  PubMed  CAS  Google Scholar 

  58. Sahin K, Kucuk O, Sahin N (2001) Effects of dietary chromium picolinate supplementation on performance and plasma concentrations of insulin and corticosterone in laying hens under low ambient temperature. J Anim Physiol Anim Nutr 85:142–147

    Article  CAS  Google Scholar 

  59. Sahin N, Onderci M, Sahin K (2002) Effects of dietary chromium and zinc on egg production, egg quality, and some blood metabolites of laying hens reared under low ambient temperature. Biol Trace Elem Res 85:47–58

    Article  PubMed  CAS  Google Scholar 

  60. Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR (2013) Antidiabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr 110(2):197–205

    Article  PubMed  CAS  Google Scholar 

  61. Moonsie-Shageer S, Mowat DN (1993) Effect of level of supplemental chromium on performance serum constituents and immune status of stressed feeder calves. J Anim Sci 71:232–238

    PubMed  CAS  Google Scholar 

  62. Mowat DN, Chang X, Yang WZ (1993) Chelated chromium for stressed feeder calves. Can J Anim Sci 73:49–55

    Article  CAS  Google Scholar 

  63. Pechova A, Pavlata L, Illek J (2002) Metabolic effects of chromium administration to dairy cows in the period of stress. Czech J Anim Sci 47:1–7

    CAS  Google Scholar 

  64. Komorowski JR, Tuzcu M, Sahin N, Juturu V, Orhan C, Ulas M, Sahin K (2012) Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biol Trace Elem Res 149(1):50–56

    Article  PubMed  CAS  Google Scholar 

  65. Khalili M, Foroozandeh M, Toghyani M (2011) Lactation performance and serum biochemistry of dairy cows fed supplemental chromium in the transition period. Afr J Biotechnol 10(50):10304–10310

    CAS  Google Scholar 

  66. Mirzaei M, Ghorbani GR, Khorvash M, Rahmani HR, Nikkhah A (2011) Chromium improves production and alters metabolism of early lactation cows in summer. J Anim Physiol Anim Nutr 95(1):81–89

    Article  CAS  Google Scholar 

  67. Domínguez-Varaa IA, González-Munoz SS, Pinos-Rodríguezc JM, Bórquez-Gastelum JL, Bárcena-Gama R, Mendoza-Martínez G, Zapataf LE, Landois-Palencia LL (2009) Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Anim Feed Sci Technol 152:42–49

    Article  Google Scholar 

  68. Yari M, Nikkhah A, Alikhani M, Khorvash M, Rahmani H, Ghorbani GR (2010) Physiological calf responses to increased chromium supply in summer. J Dairy Sci 93(9):4111–4120

    Article  PubMed  CAS  Google Scholar 

  69. Spears JW (1999) Reevaluation of the metabolic essentiality of the minerals: review. Asian Aust J Anim Sci 12:1002–1008

    CAS  Google Scholar 

  70. Underwood EJ (1997) Chromium in Trace elements in human and animal nutrition, 4th edn. New York, pp 258-270

  71. Schrauzer GN, Shrestha KP, Molenaar TB, Meade S (1986) Effects of chromium supplementation on food energy utilization and the trace element composition in the liver and heart of glucose-exposed young mice. Biol Trace Elem Res 9:79–86

    Article  CAS  Google Scholar 

  72. Biswas P, Haldar S, Pakhira MC, Ghosh TK, Biswas C (2006) Efficiency of nutrient utilization and reproductive performance of pre-pubertal dairy heifers supplemented with inorganic and organic chromium compounds. J Sci Food Agr 86:804–815

    Article  CAS  Google Scholar 

  73. Nockels CF (1990) Effect of stress on mineral requirements. Western Nutrition Confrence Calgary, AB, Canada, p 27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Kaur, H., Tyagi, A.K. et al. Effect of Feeding Inorganic Chromium on Growth Performance, Endocrine Variables, and Energy Metabolites in Winter-Exposed Buffalo Calves (Bubalus bubalis). Biol Trace Elem Res 155, 352–360 (2013). https://doi.org/10.1007/s12011-013-9808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9808-3

Keywords

Navigation