Calcium Fructoborate Helps Control Inflammation Associated with Diminished Bone Health

Abstract

Inflammation has been identified as a possible contributory factor to disruption of the normal bone remodeling process, a process essential to healthy bone mineral density. Several large population-based clinical studies have specifically shown that levels of C-reactive protein, an immune recognition protein that is a sensitive marker of inflammation, are inversely and independently associated with total bone mineral density. The evidence suggests that control of C-reactive protein levels may contribute to bone health by protecting against inflammation’s disruption of the equilibrium between bone resorption and bone deposition. Calcium fructoborate, a patented complex of calcium, fructose, and boron found naturally in fresh and dried fruits, vegetables and herbs, and wine, is a sugar-borate ester. A growing body of peer-reviewed, published clinical research indicates that the calcium fructoborate significantly reduces serum levels of the C-reactive protein in humans, suggesting that this unique plant–mineral complex may contribute to bone health by controlling the inflammation associated with loss of bone mineral density.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AA:

Arachidonic acid

ALP:

Alkaline phosphatase

BMD:

Bone mineral density

CF:

Calcium fructoborate

COX-2:

Cyclooxygenase-2

CRP:

C-reactive protein

ESR:

Erythrocyte sedimentation rate

FBR:

Fibrinogen

hs-CRP:

High-sensitivity C-reactive protein

IL:

Interleukin

LPS:

Lipopolysaccharide

SBE:

Sugar-borate ester

TNF-alfa:

Tumor necrosis factor-alfa

References

  1. 1.

    Dembitsky VM, Smoum R, Al-Quntar AAA, Ali HA, Pergament I, Srebnik M (2009) Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Sci 163:931–942

    Article  Google Scholar 

  2. 2.

    Ishii T, Matsunaga T (1996) Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res 284:1–9

    Article  CAS  Google Scholar 

  3. 3.

    Matsunaga I, Ishi T, Watanbe H (1996) Speciation of water-soluble boron compounds in radish roots by size exclusion HPLC/ICP-MS. Anal Sci 12:673–675

    Article  CAS  Google Scholar 

  4. 4.

    Matsunaga T, Nagata N (1995) In vivo 11B NMR observation of plant tissue. Anal Sci 11:889–892

    Article  CAS  Google Scholar 

  5. 5.

    Hunt CD (2012) Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Exp Biol 26:157–160

    Article  CAS  Google Scholar 

  6. 6.

    Goldbach HE, Huang L, Wimmer MA (2007) Boron functions in plants and animals: recent advances in boron research and open questions. In: Xu F, Goldbach HE, Brown PH et al (eds) Advances in plant and animal boron nutrition. Springer, Dordrecht, pp 3–25

    Google Scholar 

  7. 7.

    Nielsen FH (2008) Is boron nutritionally relevant? Nutr Rev 66(4):183–191

    PubMed  Article  Google Scholar 

  8. 8.

    Nielsen F, Meacham S (2011) Growing evidence for human health benefits of boron. J Evid Based Complement Alternat Med 16:3169–3180

    Google Scholar 

  9. 9.

    Hunt CD, Idso JP (1999) Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress. J Trace Elem Exp Biol 12:221–233

    Article  CAS  Google Scholar 

  10. 10.

    Hunt CD (2003) Dietary boron: an overview of the evidence for its role in immune function. J Trace Elem Exp Biol 16:291–306

    Article  CAS  Google Scholar 

  11. 11.

    Hunt CD, Herbel JL, Idso JP (1994) Dietary boron modifies the effects of vitamin D3 nutriture on indices of energy substrate utilization and mineral metabolism in the chick. J Bone Miner Res 9:171–181

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Scorei RI, Rotaru P (2011) Calcium fructoborate—potential anti-inflammatory agent. Biol Trace Elem Res 143(3):1223–1238

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Wagner CC, Ferraresi Curotto V, Pis Diez R, Baran EJ (2008) Experimental and theoretical studies of calcium fructoborate. Biol Trace Elem Res 122:64–72

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Miljkovic D, Scorei IR, Cimpoiasu VM, Scorei ID (2009) Calcium fructoborate: plant based dietary boron for human nutrition. J Diet Suppl 6:211–226

    PubMed  Article  Google Scholar 

  15. 15.

    Rotaru P, Scorei R, Harabor A, Dumitru MD (2010) Thermal analysis of a calcium fructoborate sample. Thermochim Acta 506:8–13

    Article  CAS  Google Scholar 

  16. 16.

    Scorei R, Ciubar R, Iancu C, Mitran V, Cimpean A, Iordachescu D (2007) In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes. Biol Trace Elem Res 118:27–37

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Scorei RI, Ciofrangeanu C, Ion R et al (2010) In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biol Trace Elem Res 135:334–344

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Scorei R, Mitrut P, Petrisor I, Scorei ID (2011) A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis. Biol Trace Elem Res 144(1–3):253–263

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Reyes-Izquierdo T, Nemzer B, Gonzalez AE, Zhou Q, Argumedo R, Shu C, Pietrzkowski ZB (2012) Short-term intake of calcium fructoborate improves WOMAC and McGill scores and beneficially modulates biomarkers associated with knee osteoarthritis: a pilot clinical double-blinded placebo-controlled study. J Biomed Sci 4(2):111–122

    CAS  Google Scholar 

  20. 20.

    Militaru C, Donoiu I, Craciun A, Scorei ID, Bulearca AM, Scorei RI (2013) Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life. Nutrition 29(1):178–183

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Du Clos TW (2000) Function of C-reactive protein. Ann Med 32(4):274–278

    PubMed  Article  Google Scholar 

  22. 22.

    Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, Stijnen T, Hofman A, Schram MT, Witteman JC (2007) Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes 56(3):872–878

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107:363–369

    PubMed  Article  Google Scholar 

  24. 24.

    Devaraj S, Singh U, Jialal I (2009) Human C-reactive protein and the metabolic syndrome. Curr Opin Lipidol 20(3):182–189

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Smith JW, Martins TB, Gopez E, Johnson T, Hill HR, Rosenberg TD (2012) Significance of C-reactive protein in osteoarthritis and total knee arthroplasty outcomes. Ther Adv Musculoskelet Dis 4(5):315–325

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Devlin J, Gough A, Huissoon A, Perkins P, Holder R, Reece R, Arthur V, Emery P (1997) The acute phase and function in early rheumatoid arthritis. C-reactive protein levels correlate with functional outcome. J Rheumatol 24(1):9–13

    PubMed  CAS  Google Scholar 

  27. 27.

    Koh J-M, Khang Y-H, Jung C-H, Bae S, Kim DJ, Chung Y-E Kim GS (2005) Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int 16:1263–1271

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    De Pablo P, Cooper MS, Buckley CD (2012) Association between bone mineral density and C-reactive protein in a large population-based sample. Arthritis Rheum 64(8):2624–2631

    PubMed  Article  Google Scholar 

  29. 29.

    Tanaka Y, Nakayamada S, Okada Y (2005) Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy 4(3):325–328

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Thmson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immun 138:775–779

    Google Scholar 

  31. 31.

    Hardy R, Cooper MS (2009) Bone loss in inflammatory disorders. J Endocrinol 201:309–320

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Stobaugh DJ, Deepak P, Ehrenpreis ED (2013) Increased risk of osteoporosis-related fractures in patients with irritable bowel syndrome. Osteoporos Int 24(4):1169–1175

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Manda D, Popa O, Vladoiu S, Dumitrache C (2009) Calcium fructoborate effect on osteoblast mineralization in vitro. Bone 44(2):S298–S299

    Article  Google Scholar 

  35. 35.

    Dinca L, Scorei R (2013) Boron in human nutrition and its regulations use. J Nutr Ther 2(1):22–28

    CAS  Google Scholar 

  36. 36.

    Goldring SR (2003) Bone loss in chronic inflammatory conditions. J Musculoskel Neuron Interact 3(4):287–289

    CAS  Google Scholar 

  37. 37.

    Goldring SR, Gravallese EM (2000) Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res 2:33–37

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Gough AK, Lilley J, Eyre S, Holder RL, Emery P (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344:23–27

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Spector TD, Hall GM, McCloskey EV, Kanis JA (1993) Risk of vertebral fracture in women with rheumatoid arthritis. Br Med J 306:558

    Article  CAS  Google Scholar 

  40. 40.

    Schoon EJ, Blok BM, Geerling BJ, Russel MG, Stockbrugger RW, Brummer RJ (2000) Bone mineral density in patients with recently diagnosed inflammatory bowel disease. Gastroenterology 119:1203–1208

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Bultink IE, Lems WF, Kostense PJ, Dijkmans BA, Voskuyl AE (2005) Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum 52:2044–2050

    PubMed  Article  Google Scholar 

  42. 42.

    Mantovani A, Garlanda C, Doni A, Bottazzi B (2008) Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3. J Clin Immunol 28:1–13

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Koukkunen H, Penttilä K, Kemppainen A, Halinen M, Penttila I, Rantanen T, Pyörälä K (2001) C-reactive protein, fibrinogen, interleukin-6 and tumour necrosis factor-alpha in the prognostic classification of unstable angina pectoris. Ann Med 33(1):37–47

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Thomson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779

    PubMed  CAS  Google Scholar 

  45. 45.

    Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14. doi:10.1186/1742-4933-2-14

    PubMed  Article  Google Scholar 

  46. 46.

    Rifai N, Ridker PM (2001) High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease. Clin Chem 47(3):403–411

    PubMed  CAS  Google Scholar 

  47. 47.

    Attur M, Krasnokutsky-Samuels S, Samuels S, Abramson SB (2013) Prognostic biomarkers in osteoarthritis. Curr Opin Rheumatol 25:136–144

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Kim BJ, Yu YM, Kim EN, Chung YE, Koh JM, Kim GS (2007) Relationship between serum hsCRP concentration and biochemical bone turnover markers in healthy pre- and postmenopausal women. Clin Endocrinol (Oxf) 67(1):152–158

    Article  CAS  Google Scholar 

  49. 49.

    Hafez EA, Mansour HE, Hamza SH, Moftah SG, Younes TB, Ismail MA (2011) Bone mineral density changes in patients with recent-onset rheumatoid arthritis. Clin Med Insights Arthritis Musculoskelet Disord 4:87–94

    PubMed  Google Scholar 

  50. 50.

    Benhamou M, Gossec L, Dougados M (2010) Clinical relevance of C-reactive protein in ankylosing spondylitis and evaluation of the NSAIDs/coxibs’ treatment effect on C-reactive protein. Rheumatol 49(3):536–541

    Article  CAS  Google Scholar 

  51. 51.

    Handa R (2003) Approach seronegative arthritis. JIACM 4(3):190–192

    Google Scholar 

  52. 52.

    Filipowicz R, Greene T, Wei G, Cheung AK, Raphael KL, Baird BC, Beddhu S (2013) Associations of serum skeletal alkaline phosphatase with elevated C-reactive protein and mortality. Clin J Am Soc Nephrol 8(1):26–32

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    El-Maouche D, Xu X, Cofrancesco J, Adrian S, Dobs AS, Brown TT (2011) Prevalence of low bone mineral density in a low-income inner-city population. J Bone Miner Res 26(2):388–396

    PubMed  Article  Google Scholar 

  54. 54.

    Scorei R (2011) Boron compounds in the breast cancer cells. Chemoprevention and chemotherapy. In: Gunduz E, Gunduz M (eds) Breast cancer—current and alternative therapeutic modalities. InTech, Rijeka, pp 92–114

    Google Scholar 

  55. 55.

    Scorei RI, Popa R (2013) Sugar-borate esters—potential chemical agents in prostate cancer chemoprevention. AntiCancer Agents Med Chem 13(6):901–909

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Scorei R (2013) Regulation of therapeutic potential of boron-containing compounds. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins, 1st edn. Springer, Berlin, p 100

    Google Scholar 

  57. 57.

    Hu H, Penn S, Lebrillo C, Brown PH (1997) Isolation and characterization of soluble boron complexes in higher plants. Plant Physiol 113:649–55

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Criste RD, Grossu DV, Scorei R et al. (2005) New investigations on the effect of the dietary boron on broilers and layers: boron and food quality. Arch Zoot 8:65–78. [Available at http://www.ibna.ro/arhiva/AZ%208/AZ%208_06%20RCriste.pdf] Accessed 26 April 2013

    Google Scholar 

  59. 59.

    Taranu I, Marin DE, Manda G, Motiu M, Neagoe I, Tabuc C, Stancu M, Olteanu M (2011) Assessment of the potential of a boron-fructose additive in counteracting the toxic effect of Fusarium mycotoxins. Br J Nutr 106(3):398–407

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Dessein PH, Stanwix AE, Joffe BJ (2002) Cardiovascular risk in rheumatoid arthritis versus osteoarthritis: acute phase response related decreased insulin sensitivity and high-density lipoprotein cholesterol as well as clustering of metabolic syndrome features in rheumatoid arthritis. Arthritis Res 4:R5

    PubMed  Article  Google Scholar 

  61. 61.

    Ghivercea V, Grecu D, Lichiardopol C, Maria R (2004) Tratamentul osteoporozei cu fructoborat de calciu. Revista de Ortopedie si Traumatologie (Bucuresti) 14(1–2):75–82

    Google Scholar 

  62. 62.

    Scorei R, Cimpoiasu VM, Iordachescu D (2005) In vitro evaluation of the antioxidant activity of calcium fructoborate. Biol Trace Elem Res 107:127–134

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Park M, Li Q, Shcheynikov N, Zeng W, Muallem S (2004) NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16:331–341

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Scorei R, Ciubar R, Ciofrangeanu CM, Mitran V, Cimpean A, Iordachescu D (2008) Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biol Trace Elem Res 122:197–205

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Bienert GP, Chaumont F (2013) Aquaporins and boron. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins, 1st edn. Springer, Berlin, p 100

    Google Scholar 

  66. 66.

    Scorei R (2012) Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on Earth. Orig Life Evol Biosph 42(1):3–17

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Bassil E, Hu H, Brown PH (2004) Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol 136(2):3383–5

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Hunt CD (2002) Boron-binding biomolecules: a key to understanding the beneficial physiologic effects of dietary boron from prokaryotes to humans. In: Goldbach HE, Rerkasem B, Wimmer MA, Brown PH, Thellier M, Bell RW (eds) Boron in plant and animal nutrition. Kluwer, New York, pp 21–36

    Google Scholar 

  69. 69.

    Meacham S, Karakas S, Wallace A, Altun F (2010) Boron in human health: evidence for dietary recommendations and public policies. Open Miner Process J 3:36–53

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Bioboron Research Institute from Craiova (Romania).

Conflict of Interest

The authors declare that they have no competing interests. The authors alone are responsible for the content and writing of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romulus Ion Scorei.

Additional information

All the authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scorei, I.D., Scorei, R.I. Calcium Fructoborate Helps Control Inflammation Associated with Diminished Bone Health. Biol Trace Elem Res 155, 315–321 (2013). https://doi.org/10.1007/s12011-013-9800-y

Download citation

Keywords

  • Fructoborate
  • Boron
  • Inflammation
  • Bone health