Skip to main content
Log in

Effects of Zinc on Interleukins and Antioxidant Enzyme Values in Psoriasis-Induced Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of zinc chloride (ZnCl2), disodium zinc ethylenediamine tetraacetate (Zn-EDTA), and zinc gluconate (Zn-GLU) on the antioxidant enzyme activities and levels of interleukins (ILs) in psoriasis-induced mice were studied. One hundred twenty female mice were randomly divided into six groups with 20 mice in each group: the control, positive control (PC), methotrexate (MTX), ZnCl2, Zn-EDTA, and Zn-GLU groups. All animals except the control group were given diethylstilbestrol for three consecutive days. After successfully inducing psoriasis, the control and PC groups were given normal saline (i.g.) daily while the remaining groups were given MTX, ZnCl2, Zn-EDTA, and Zn-GLU, respectively. The results revealed that the zinc supplementation could significantly (p < 0.05) inhibit mitosis in the mouse vaginal epithelium as methotrexate did and the inhibiting efficacy had nothing to do with the zinc forms. After ZnCl2, Zn-EDTA, and Zn-GLU supplementation, the levels of liver superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities increased and the concentration of malondialdehyde (MDA) decreased significantly (p < 0.05) compared to the PC group. The levels of SOD, CAT activity, and MDA level between each zinc supplementation group and MTX group were insignificant (p > 0.05). The zinc treatments also caused a significant (p < 0.05) decrease in the raised IL-2 level of animal serum. The results obtained in the present work indicate the potential for zinc as a complementary pharmaceutical intervention for the treatment of topical psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. DiSepio D, Chandraratna RA, Nagpal S (1999) Novel approaches for the treatment of psoriasis. Drug Discov Today 4(5):222–231

    Article  PubMed  CAS  Google Scholar 

  2. Pietrzak AT, Zalewska A, Chodorowska G et al (2008) Cytokines and anticytokines in psoriasis. Clin Chim Acta 394(1):7–21

    Article  PubMed  CAS  Google Scholar 

  3. Bonifati C, Trento E, Cordiali-Fei P et al (1997) Increased interleukin-7 concentrations in lesional skin and in the sera of patients with plaque-type psoriasis. Clin Immunol Immunopathol 83(1):41–44

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC (2011) Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 63:1–9

    Article  PubMed  CAS  Google Scholar 

  5. Kural BV, Orem A, Cimsit G, Yandi YE, Calapoglu M (2003) Evaluation of the atherogenic tendency of lipids and lipoprotein content and their relationships with oxidant–antioxidant system in patients with psoriasis. Clin Chim Acta 328:71–82

    Article  Google Scholar 

  6. Zhou Q, Mrowietz U, Rostami-Yazdi M (2009) Oxidative stress in the pathogenesis of psoriasis. Free Radical Biol Med 47:891–905

    Article  CAS  Google Scholar 

  7. Mariani E, Mangialasche F, Feliziani FT et al (2008) Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp Gerontol 43:445–451

    Article  PubMed  CAS  Google Scholar 

  8. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  9. Naziroglu M (2012) Molecular role of catalase on oxidative stress-induced Ca2+ signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32(3):134–141

    Article  PubMed  CAS  Google Scholar 

  10. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  Google Scholar 

  11. Jemai H, Messaoudi I, Chaouch A, Kerkeni A (2007) Protective effect of zinc supplementation on blood antioxidant defense system in rats exposed to cadmium. J Trace Elem Med Biol 21:269–273

    Article  PubMed  CAS  Google Scholar 

  12. Santon A, Irato P, Medici V, D’Inca R, Albergoni LV, Sturniolo GC (2003) Effect and possible role of Zn treatment in LEC rats, an animal model of Wilson’s disease. Biochim Biophys Acta 1637(1):91–97

    Article  PubMed  CAS  Google Scholar 

  13. Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol 46:452–463

    Google Scholar 

  14. Tandon SK, Singh S, Prasad S, Mathur N (2001) Hepatic and renal metallothionein induction by an oral equimolar dose of zinc, cadmium or mercury in mice. Food Chem Toxicol 39:571–577

    Article  PubMed  CAS  Google Scholar 

  15. Faure P, Bouvard S, Roucard C, Favier A, Halimi S (2005) Zinc protects HeLa-tat cells against free radical cytotoxicity induced by glucose. J Trace Elem Med Biol 18:269–276

    Article  PubMed  CAS  Google Scholar 

  16. Bonder RH, Van Scott EJ (1971) Use of mouse vaginal and rectal epithelium to screen antimitotic effects of systemically administered drugs. Cancer Res 31(6):851–853

    PubMed  CAS  Google Scholar 

  17. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    PubMed  CAS  Google Scholar 

  18. Sykes J, McCormack F, O’Brien T (1978) A preliminary study of the superoxide dismutase content of some human tumors. Cancer Res 38(9):2759–2762

    PubMed  CAS  Google Scholar 

  19. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  20. Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84(2):450–455

    Article  PubMed  CAS  Google Scholar 

  21. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  22. Y-j W, K-A L, Tong S-Y (1997) A linear regression method for the study of the Coomassie brilliant blue protein assay. Talanta 44(5):923–930

    Article  Google Scholar 

  23. Kaur M, Bahia MS, Silakari O (2012) Inhibitors of interleukin-2 inducible T-cell kinase as potential therapeutic candidates for the treatment of various inflammatory disease conditions. Eur J Pharm Sci 47(3):574–588

    Article  PubMed  CAS  Google Scholar 

  24. Kemmett D, Symons JA, Colver GB, Duff GW (1990) Serum-soluble interleukin 2 receptor in psoriasis. Failure to reflect clinical improvement. Acta Derm-Venereol 70(3):264–266

    PubMed  CAS  Google Scholar 

  25. Asadullah K, Sterry W, Stephanek K et al (1998) IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Incest 101(4):783–794

    Article  CAS  Google Scholar 

  26. Nockowski P, Baran W (2005) Novel approach to psoriasis. Terapia 3:20–24

    Google Scholar 

  27. Mussi A, Bonifati C, Carducci M et al (1994) IL-10 levels are decreased in psoriatic lesional skin as compared to the psoriatic lesional-free and normal skin suction blister fluids. J Biol Regul Homeost Agent 8(4):117–120

    CAS  Google Scholar 

  28. Kingo K, Ratsep R, Koksb S, Karelson M, Silm H, Vasar E (2005) Influence of genetic polymorphisms on interleukin-10 mRNA expression and psoriasis susceptibility. J Dermatol Sci 37(2):111–113

    Article  PubMed  CAS  Google Scholar 

  29. Kaur S, Zilmer K, Leping V, Zilmer M (2012) Comparative study of systemic inflammatory responses in psoriasis vulgaris and mild to moderate allergic contact dermatitis. Dermatology 225(1):54–61

    Article  PubMed  CAS  Google Scholar 

  30. Michalak-Stoma A, Pietrzak A, Szepietowski JC, Zalewska-Janowska A, Paszkowski T, Chodorowska G (2011) Cytokine network in psoriasis revisited. Eur Cytokine Netw 22(4):160–168

    PubMed  CAS  Google Scholar 

  31. Nazıroğlu M, Yıldız K, Tamtürk B, Erturan I, Flores-Arce M (2012) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    PubMed  Google Scholar 

  32. Kökçam I, Naziroğlu M (1999) Antioxidants and lipid peroxidation status in the blood of patients with psoriasis. Clin Chim Acta 289(1–2):23–31

    Article  PubMed  Google Scholar 

  33. Mansouri A, Hamidatou Alghem L, Beladel B, Mokhtari OEK, Bendaas A, Benamar MEA (2013) Hair-zinc levels determination in Algerian psoriatics using instrumental neutron activation analysis (INAA). Appl Radiat Isot 72:177–181

    Article  PubMed  CAS  Google Scholar 

  34. Arora PN, Dhillon KS, Rajan SR, Sayal SK, Das AL (2002) Serum zinc levels in cutaneous disorders. MJAFl 58(4):304–306

    Google Scholar 

  35. Kharaeva Z, Gostova E, De Luca C, Raskovic D, Korkina L (2009) Clinical and biochemical effects of coenzyme Q10, vitamin E, and selenium supplementation to psoriasis patients. Nutrition 25(3):295–302

    Article  PubMed  CAS  Google Scholar 

  36. Afridi HI, Kazi TG, Kazi N et al (2011) Evaluation of cadmium, chromium, nickel, and zinc in biological samples of psoriasis patients living in Pakistani cement factory area. Biol Trace Elem Res 142(3):284–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L.L., Zhang, Y., Guo, D.M. et al. Effects of Zinc on Interleukins and Antioxidant Enzyme Values in Psoriasis-Induced Mice. Biol Trace Elem Res 155, 411–415 (2013). https://doi.org/10.1007/s12011-013-9799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9799-0

Keywords

Navigation