Advertisement

Biological Trace Element Research

, Volume 155, Issue 3, pp 370–380 | Cite as

Effects of Dietary Copper on Growth, Digestive, and Brush Border Enzyme Activities and Antioxidant Defense of Hepatopancreas and Intestine for Young Grass Carp (Ctenopharyngodon idella)

  • Q. Q. Tang
  • L. FengEmail author
  • W. D. Jiang
  • Y. Liu
  • J. Jiang
  • S. H. Li
  • S. Y. Kuang
  • L. Tang
  • X. Q. ZhouEmail author
Article

Abstract

To investigate the effects of dietary copper (Cu) on fish growth, digestive and absorptive enzyme activities, and antioxidant status in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idella) (282±2.8 g) were fed six diets containing 0.74 (basal diet), 2.26, 3.75, 5.25, 6.70, and 8.33 mg Cu /kg diet for 8 weeks. Results showed that percentage weight gain (PWG) and feed intake were increased with dietary Cu levels up to 3.75 mg/kg diet. In addition, the positive effects of dietary Cu at a level 3.75 or 5.25 mg/kg diet on trypsin, chymotrypsin, and lipase activities in the hepatopancreas and of Na+, K+-ATPase, alkaline phosphatase, creatine kinase, and γ-glutamyl transpeptidase activities in three intestine segments produced significantly (P<0.05) better feed efficiency (FE). However, amylase activity in the hepatopancreas was decreased by dietary Cu levels up to 3.75 mg/kg diet (P<0.05). In addition, dietary Cu at 3.75 or 5.25 mg/kg diet decreased malondialdehyde and protein carbonyl content partly by significantly (P<0.05) increasing the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione content in the hepatopancreas and intestine. Collectively, dietary Cu improved growth and digestive and absorptive capacity and decreased lipid peroxidation and protein oxidation partly by enhancing antioxidant defense in the hepatopancreas and intestine. The dietary Cu requirement for PWG, plasma ceruloplasmin activity, and FE of young grass carp (282–688 g) were 4.78, 4.95, and 4.70 mg/kg diet, respectively.

Keywords

Copper Ctenopharyngodon idella Digestive, brush border, and antioxidant enzyme activity 

Notes

Acknowledgments

This research was financially supported by the National Department Public Benefit Research Foundation (Agriculture) of China (201003020), Science and Technology Support Programme of Sichuan Province of China (2011NZ0071), and Major Scientific and Technological Achievement Transformation Project of Sichuan Province of China (2012NC0007). The authors would like to thank the personnel of these teams for their kind assistance.

References

  1. 1.
    Fang KM, Cheng FC, Huang YL, Chung SY, Jian ZY, Lin MC (2013) Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biol Trace Elem Res 152:66–74PubMedCrossRefGoogle Scholar
  2. 2.
    Ogino C, Yang G (1980) Requirements of carp and rainbow trout for dietary manganese and copper. Bull Jap Soc Sci Fish 46:455–458CrossRefGoogle Scholar
  3. 3.
    Lin YH, Shie YY, Shiau SY (2008) Dietary copper requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 274:161–165CrossRefGoogle Scholar
  4. 4.
    Tan XY, Luo Z, Liu X, Xie CX (2011) Dietary copper requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquacult Nutr 17:170–176CrossRefGoogle Scholar
  5. 5.
    Perez-Casanova J, Murray H, Gallant J, Ross N, Douglas S, Johnson S (2006) Development of the digestive capacity in larvae of haddock, Melanogrammus aeglefinus and Atlantic cod, Gadus morhua. Aquaculture 251:377–401CrossRefGoogle Scholar
  6. 6.
    Chan A, Horn M, Dickson K, Gawlicka A (2004) Digestive enzyme activities in carnivores and herbivores: comparisons among four closely related prickleback fishes (Teleostei: Stichaeidae) from a California rocky intertidal habitat. J Fish Biol 65:848–858CrossRefGoogle Scholar
  7. 7.
    Weaver FC (1989) Progressive changes in pancreatic vasculature accompanying copper deficiency-induced glandular atrophy. Intern J Pancreatology 4:175–186Google Scholar
  8. 8.
    Dush MK, Nascone-Yoder NM (2013) Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut. Development 140:1457–1466PubMedCrossRefGoogle Scholar
  9. 9.
    Gallagher C, Reeve VE (1971) Copper deficiency in the rat. Effect on synthesis of phospholipids. Aust J Exp Biol Med Sci 49:21–31PubMedCrossRefGoogle Scholar
  10. 10.
    Turan A, Mahmood A (2007) The profile of antioxidant systems and lipid peroxidation across the crypt–villus axis in rat intestine. Digest Dis Sci 52:1840–1844PubMedCrossRefGoogle Scholar
  11. 11.
    Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S 3:2161–0495Google Scholar
  12. 12.
    Rodriguez-Ariza A, Peinado J, Pueyo C, Lopez-Barea J (1993) Biochemical indicators of oxidative stress in fish from polluted littoral areas. Can J Fish Aquat Sci 50:2568–2573CrossRefGoogle Scholar
  13. 13.
    Wang W, Mai K, Zhang W, Ai Q, Yao C, Li H, Liu FZ (2009) Effects of dietary copper on survival, growth and immune response of juvenile abalone, Haliotis discus hannai. Aquaculture 297:122–127CrossRefGoogle Scholar
  14. 14.
    Shao XP, Liu WB, Xu WN, Lu KL, Xia W, Jiang YY (2010) Effects of dietary copper sources and levels on performance, copper status, plasma antioxidant activities and relative copper bioavailability in Carassius auratus gibelio. Aquaculture 308:60–65CrossRefGoogle Scholar
  15. 15.
    Gîlcă V (2010) Research concerning the feed digestibility and the digestive utilization coefficient in grass carp, Ctenopharingodon idella. AACL Bioflux 3:378–383Google Scholar
  16. 16.
    Ahmed I, Khan MA (2004) Dietary lysine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture 235:499–511CrossRefGoogle Scholar
  17. 17.
    Li JS, Li JL, Wu TT (2007) The effects of copper, iron and zinc on digestive enzyme activity in the hybrid tilapia, Oreochromis niloticus (L.) × Oreochromis aureus (Steindachner). J Fish Biol 71:1788–1798CrossRefGoogle Scholar
  18. 18.
    Shaiu S, Ning Y (2003) Non-ruminant nutrition, behaviour and production—estimation of dietary copper requirements of juvenile tilapia, Oreochromis niloticus × O. aureus. J Anim Sci 77:287–292Google Scholar
  19. 19.
    Kuang SY, Xiao WW, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Tang L, Zhou XQ (2012) Effects of graded levels of dietary methionine hydroxy analogue on immune response and antioxidant status of immune organs in juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol 32:629–636PubMedCrossRefGoogle Scholar
  20. 20.
    Sveier H, Nordas H, Berge G, Lied E (2001) Dietary inclusion of crystalline d-and l-methionine: effects on growth, feed and protein utilisation, and digestibility in small and large Atlantic salmon (Salmon salar L.). Aquacult Nutr 7:169–182CrossRefGoogle Scholar
  21. 21.
    Lee MH, Shiau SY (2002) Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish Shellfish Immunol 13:259–270PubMedCrossRefGoogle Scholar
  22. 22.
    Du ZY, Liu YJ, Tian LX, He JG, Cao JM, Liang GY (2006) The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp, Ctenopharyngodon idella. Aquacult Int 14:247–257CrossRefGoogle Scholar
  23. 23.
    Aguila J, Cuzon G, Pascual C, Domingues PM, Gaxiola G, Sánchez A, Maldonado T, Rosas C (2007) The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: digestive enzyme activity, blood metabolites, and energy balance. Aquaculture 273:641–655CrossRefGoogle Scholar
  24. 24.
    Berdikova Bohne VJ, Hamre K, Arukwe A (2007) Hepatic metabolism, phase I and II biotransformation enzymes in Atlantic salmon (Salmo Salar, L) during a 12 week feeding period with graded levels of the synthetic antioxidant, ethoxyquin. Food chem toxicol 45:733–746PubMedCrossRefGoogle Scholar
  25. 25.
    Cunniff P, Horwitz W (1997) Official methods of analysis of AOAC International: food composition, additives, natural contaminants. AOAC InternationalGoogle Scholar
  26. 26.
    Kotorman M, Laszlo K, Nemcsok J, Simon L (2000) Effects of CD2+, CU2+, PB2+ and ZN2+ on activities of some digestive enzymes in carp (Cyprinus carpio L.). J Environ Sci Heal A 35:1517–1526CrossRefGoogle Scholar
  27. 27.
    Lemieux H, Blier P, Dutil JD (1999) Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod, Gadus morhua? Fish Physiol Biochem 20:293–303CrossRefGoogle Scholar
  28. 28.
    Akyuz F, Aydın Ö, Demir TA, Kanbak G (2009) The effects of CCl4 on Na+/K+-ATPase and trace elements in rats. Biol Trace Elem Res 132:207–214PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Y, Tang J, Ma W, Feng J (2010) Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol Trace Elem Res 133:325–334PubMedCrossRefGoogle Scholar
  30. 30.
    Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly RA (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci U S A 93:5604–5609PubMedCrossRefGoogle Scholar
  31. 31.
    Harpaz S, Uni Z (1999) Activity of intestinal mucosal brush border membrane enzymes in relation to the feeding habits of three aquaculture fish species. Comp Biochem Physiol, A 124:155–160CrossRefGoogle Scholar
  32. 32.
    Smith P, Krohn RI, Hermanson G, Mallia A, Gartner F, Provenzano M, Fujimoto E, Goeke N, Olson B, Klenk D (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  33. 33.
    Ayhanci A, Günes S, Sahinturk V, Appak S, Uyar R, Cengiz M, Altuner Y, Yaman S (2010) Seleno l-methionine acts on cyclophosphamide-induced kidney toxicity. Biol Trace Elem Res 136:171–179PubMedCrossRefGoogle Scholar
  34. 34.
    Kosik-Bogacka DI, Baranowska-Bosiacka I, Noceń I, Jakubowska K, Chlubek D (2011) Hymenolepis diminuta: activity of anti-oxidant enzymes in different parts of rat gastrointestinal tract. Exp Parasitol 128:265–271PubMedCrossRefGoogle Scholar
  35. 35.
    Jiang WD, Feng L, Liu Y, Jiang J, Hu K, Li SH, Zhou XQ (2010) Lipid peroxidation, protein oxidant and antioxidant status of muscle, intestine and hepatopancreas for juvenile Jian carp, Cyprinuscarpio var. Jian fed graded levels of myo-inositol. Food Chem 120:692–697CrossRefGoogle Scholar
  36. 36.
    Peng X, Xiong YL, Kong B (2009) Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem 113:196–201CrossRefGoogle Scholar
  37. 37.
    Arabi M, Alaeddini M (2005) Metal-ion-mediated oxidative stress in the gill homogenate of rainbow trout, Oncorhynchus mykiss. Biol Trace Elem Res 108:155–168PubMedCrossRefGoogle Scholar
  38. 38.
    Merle U, Eisenbach C, Weiss KH, Tuma S, Stremmel W (2009) Serum ceruloplasmin oxidase activity is a sensitive and highly specific diagnostic marker for Wilson's disease. J Hepatol 51:925–930PubMedCrossRefGoogle Scholar
  39. 39.
    Murai T, Andrews JW, Smith RG (1981) Effects of dietary copper on channel catfish. Aquaculture 22:353–357CrossRefGoogle Scholar
  40. 40.
    Glover CN, Wood CM (2008) Histidine absorption across apical surfaces of freshwater rainbow trout intestine: mechanistic characterization and the influence of copper. J Membrane Bio 221:87–95CrossRefGoogle Scholar
  41. 41.
    Mares-Guia M, Shaw E (1965) Studies on the active center of trypsin: the binding of amidines and guanidines as models of the substrate side chain. J Biol Chem 240:1579–1585PubMedGoogle Scholar
  42. 42.
    Barnard EA, Hope WC (1969) Identification of histidine in the active center of chymotrypsins from a reptile and a fish. Biochim Biophys Acta 178:364–369PubMedCrossRefGoogle Scholar
  43. 43.
    Desnuelle P, Semeriva M, Dufour C (1971) Probable involvement of a histidine residue in the active site of pancreatic lipase. Biochemistry 10:2143–2149PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao B, Feng L, Liu Y, Kuang SY, Tang L, Jiang J, Hu K, Jiang WD, Li SH, Zhou XQ (2012) Effects of dietary histidine levels on growth performance, body composition and intestinal enzymes activities of juvenile Jian carp, Cyprinus carpio var. Jian. Aquacult Nutr 18:220–232CrossRefGoogle Scholar
  45. 45.
    Kim SK, Cuzzort LM, Allen ED (1991) Effects of age on diabetes- and insulin-induced changes in pancreatic levels of α-amylase and its mRNA. Mech Ageing Dev 58:151–161PubMedCrossRefGoogle Scholar
  46. 46.
    Korc M, Owerbach D, Quinto C, Rutter WJ (1981) Pancreatic islet–acinar cell interaction: amylase messenger RNA levels as determined by insulin. Science (NY) 213:351–353CrossRefGoogle Scholar
  47. 47.
    Skoglund G, Gross RA, Bertrand GR, Ahré B, Loubatièes-Mariani MM (1991) Comparison of effects of neuropeptide Y and norepinephrine on insulin secretion and vascular resistance in perfused rat pancreas. Diabetes 40:660–665PubMedCrossRefGoogle Scholar
  48. 48.
    Nelson KT, Prohaska JR (2009) Copper deficiency in rodents alters dopamine b-mono-oxygenase activity, mRNA and protein level. Brit J Nutr 102:18–28PubMedCrossRefGoogle Scholar
  49. 49.
    Baden S, Depledge M, Hagerman L (1994) Glycogen depletion and altered copper and manganese handling in Nephrops norvegicus following starvation in exposure to hypoxia. Mar Ecol-Prog Ser 103:65–72CrossRefGoogle Scholar
  50. 50.
    Chang SC, Brannon PM, Korc M (1990) Effects of dietary manganese deficiency on rat pancreatic amylase mRNA levels. J Nutr 120:1228–1234PubMedGoogle Scholar
  51. 51.
    Brannon PM, Collins VP, Korc M (1987) Alterations of pancreatic digestive enzyme content in the manganese-deficient rat. J Nutr 117:305–311PubMedGoogle Scholar
  52. 52.
    Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP, Liao EY (2005) Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309:99–109PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang H, Dickinson DA, Liu RM, Forman HJ (2005) 4-Hydroxynonenal increases γ-glutamyl transpeptidase gene expression through mitogen-activated protein kinase pathways. Free Radical Bio Med 38:463–471CrossRefGoogle Scholar
  54. 54.
    Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1999) Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology 140:3177–3182PubMedCrossRefGoogle Scholar
  55. 55.
    Lin WH, Chen MD, Wang CC, Lin PY (1995) Dietary copper supplementation increases the catecholamine levels in genetically obese (ob/ob) mice. Biol Trace Elem Res 50:243–247PubMedCrossRefGoogle Scholar
  56. 56.
    Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n−3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 159:49–56PubMedCrossRefGoogle Scholar
  57. 57.
    Khoddami A, Ariffin A, Bakar J, Ghazali H (2009) Fatty acid profile of the oil extracted from fish waste (head, intestine and liver) (Sardinella lemuru). World App Sci J 7:127–131Google Scholar
  58. 58.
    Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR, Henderson CJ, Wolf CR, Moffat GJ, Itoh K (2002) Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione-S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365:405–416PubMedCrossRefGoogle Scholar
  59. 59.
    Simmons SO, Fan CY, Yeoman K, Wakefield J, Ramabhadran R (2011) NRF2 oxidative stress induced by heavy metals is cell type dependent. Curr Chem Genomics 5:1–12PubMedCrossRefGoogle Scholar
  60. 60.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. In J Biochem Cell B 39:44–84CrossRefGoogle Scholar
  61. 61.
    Zhang JX, Guo LY, Feng L, Jiang WD, Kuang SY, Liu Y, Hu K, Jiang J, Li SH, Tang L, Zhou XQ (2013) Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. Plos One 8:e58115PubMedCrossRefGoogle Scholar
  62. 62.
    Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, Ou CN, Chévez-Barrios P, Wang Y, Habib GM, Goodman JC (1996) Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A 93:7923–7926PubMedCrossRefGoogle Scholar
  63. 63.
    Schmidt MM, Dringen R (2012) Glutathione (GSH) synthesis and metabolism. In: Gruetter R, Choi I (eds) Neural metabolism in vivo. Springer, New York, pp 1029–1050CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Q. Q. Tang
    • 1
  • L. Feng
    • 1
    • 2
    • 3
    Email author
  • W. D. Jiang
    • 1
    • 2
    • 3
  • Y. Liu
    • 1
    • 2
    • 3
  • J. Jiang
    • 1
    • 2
    • 3
  • S. H. Li
    • 1
  • S. Y. Kuang
    • 4
  • L. Tang
    • 4
  • X. Q. Zhou
    • 1
    • 2
    • 3
    Email author
  1. 1.Animal Nutrition InstituteSichuan Agricultural UniversityCheng DuChina
  2. 2.Fish Nutrition and Safety Production University Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityCheng DuChina
  3. 3.Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of EducationSichuan Agricultural UniversityCheng DuChina
  4. 4.Animal Nutrition InstituteSichuan Academy of Animal ScienceChengduChina

Personalised recommendations