Advertisement

Biological Trace Element Research

, Volume 155, Issue 2, pp 287–294 | Cite as

Effect of Zinc Oxide Nanoparticles on the Function of MC3T3-E1 Osteoblastic Cells

  • Kwang Sik Suh
  • Young Soon Lee
  • Seung Hwan Seo
  • Young Seol Kim
  • Eun Mi ChoiEmail author
Article

Abstract

Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01∼1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells (P < 0.05). Moreover, pretreatment with ZnO NPs (0.01∼1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects.

Keywords

Zinc oxide nanoparticles MC3T3-E1 cells Osteogenic differentiation 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013004361).

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Webster TJ, Ergun C, Dorenus RH, Seigel RW, Bizios R (2001) Enhanced osteoclast-like functions on nanophase ceramics. Biomaterials 22:1327–1333PubMedCrossRefGoogle Scholar
  2. 2.
    Takeuchi K, Saruwatari L, Nakamura HK, Yang J, Ogawa T (2005) Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A 72:296–305PubMedGoogle Scholar
  3. 3.
    Gerloff K, Albrecht C, Boots AW, Forster I, Schins RPF (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3:355–364CrossRefGoogle Scholar
  4. 4.
    John S, Marpu S, Li J, Omary M, Hu Z, Fujita Y (2010) Hybrid zinc oxide nanoparticles for biophotonics. J Nanosci Nanotechnol 10:1707–1712PubMedCrossRefGoogle Scholar
  5. 5.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms to clinically relevant microorganisms. Clinical Microbiol Rev 15:167–193CrossRefGoogle Scholar
  6. 6.
    Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604PubMedGoogle Scholar
  7. 7.
    Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183PubMedCrossRefGoogle Scholar
  8. 8.
    Boveris A, Oshino N (1972) Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630PubMedGoogle Scholar
  9. 9.
    Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  10. 10.
    Pham NA, Robinson BH, Hedley DW (2000) Simultaneous detection of mitochondrial respiratory chain activity and reactive oxygen in digitonin-permeabilized cells using flow cytometry. Cytometry 41:245–251PubMedCrossRefGoogle Scholar
  11. 11.
    Wallach-Dayan SB, Izbicki G, Cohen PY, Gerstl-Golan R, Fine A, Breuer R (2006) Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway. Am J Physiol Lung Cell Mol Physiol 290:L790–796PubMedCrossRefGoogle Scholar
  12. 12.
    Nomura K, Imai T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193PubMedCrossRefGoogle Scholar
  13. 13.
    Hsiao IL, Huang YJ (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228PubMedCrossRefGoogle Scholar
  14. 14.
    Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nanoand micro-sized zno particles in human lung epithelial cells. J Nanopart Res 11:25–39CrossRefGoogle Scholar
  15. 15.
    Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, Xia XH (2010) Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B: Biointerfaces 76:145–150PubMedCrossRefGoogle Scholar
  16. 16.
    Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci: Mater Med 20:S235–241CrossRefGoogle Scholar
  17. 17.
    Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22:543–553PubMedCrossRefGoogle Scholar
  18. 18.
    Sharma V, Shukla RV, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218PubMedCrossRefGoogle Scholar
  19. 19.
    Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213902CrossRefGoogle Scholar
  20. 20.
    Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human t cells using ZnO nanoparticles. Nanotechnology 19:295203CrossRefGoogle Scholar
  21. 21.
    Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomed 7:845–857Google Scholar
  22. 22.
    Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–261PubMedCrossRefGoogle Scholar
  23. 23.
    Bremner I, Beattie JH (1995) Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc 54:489–499PubMedCrossRefGoogle Scholar
  24. 24.
    Yamaguchi M, Yamaguchi R (1986) Action of zinc on bone metabolism in rats: increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 35:773–777PubMedCrossRefGoogle Scholar
  25. 25.
    Hall SL, Dimai HP, Farley JR (1999) Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int 64:163–172PubMedCrossRefGoogle Scholar
  26. 26.
    Yamaguchi M, Oishi H, Suketa Y (1988) Zinc stimulation of bone protein synthesis in tissue culture. Biochem Pharmacol 37:4075–4080PubMedCrossRefGoogle Scholar
  27. 27.
    Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870PubMedCrossRefGoogle Scholar
  28. 28.
    Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, Onuma K, Kanzaki N, Sogo Y, Ichinose N (2002) Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C 22:21–25CrossRefGoogle Scholar
  29. 29.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178PubMedCrossRefGoogle Scholar
  30. 30.
    Miyazaki T, Kim HM, Miyaji F, Kokubo T, Kato H, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 50:35–42PubMedCrossRefGoogle Scholar
  31. 31.
    Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T (2002) Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 23:313–317PubMedCrossRefGoogle Scholar
  32. 32.
    McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–560PubMedCrossRefGoogle Scholar
  33. 33.
    Armstrong JS (2006) Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28:253–260PubMedCrossRefGoogle Scholar
  34. 34.
    Simbula G, Glascott P-A Jr, Akita S, Hoek JB, Farber JL (1997) Two mechanisms by which ATP depletion potentiates induction of the mitochondrial permeability transition. Am J Physiol 273:C479–488PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kwang Sik Suh
    • 1
  • Young Soon Lee
    • 2
  • Seung Hwan Seo
    • 3
  • Young Seol Kim
    • 4
  • Eun Mi Choi
    • 2
    Email author
  1. 1.Research Institute of EndocrinologyKyung Hee University HospitalSeoulSouth Korea
  2. 2.Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
  3. 3.Department of Pharmacy, College of PharmacyKyung Hee UniversitySeoulSouth Korea
  4. 4.Department of Endocrinology and Metabolism, School of MedicineKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations