Biological Trace Element Research

, Volume 155, Issue 1, pp 72–81 | Cite as

Enhanced Healing of Rat Calvarial Critical Size Defect with Selenium-Doped Lamellar Biocomposites

  • Yanhua Wang
  • Peng LvEmail author
  • Zhe Ma
  • Jingcheng Zhang


A 3D porous lamellar selenium-containing nano-hydroxyapatite (SeHAN)/chitosan (CS) biocomposite was synthesized. The selenium-containing hydroxyapatite (HA) grains of 150∼200 nm in length and 20∼30 nm in width were observed by dynamic light scattering and transmission electron microscopy. A combination of X-ray diffraction, Fourier-transform infrared spectroscopy, and SEM indicated that HA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and HA. Then, a standard critical size calvarial bone defect was created in Wistar rats. In group 1, no implant was made in the defect. In groups 2 and 3, HA nanoparticles (HAN)/CS biocomposite and SeHAN/CS biocomposite were implanted into the defect, respectively. After 4 weeks, the histological assessment clearly exhibited no significant changes, only found some living cells anchored in the periphery of the implants. After 8 and 12 weeks, most newly formed osteoid tissue was found in the SeHAN/CS implant group. Additionally, the newly formed osteoid tissue, both at the edge and in the center of implants, was bioactive and neovascularized. Microfocus computerized tomography measurements also confirmed the much better quality of the newly formed bone tissue in SeHAN/CS implant group than that in HAN/CS implant group (p < 0.01). Collectively, the SeHAN/CS biocomposite, as a bioactive bone grafting substitute, significantly enhanced the repair of bone defect.


Selenium Chitosan Biocomposite Calvarial bone repair Neovascularization 



Sincerely, we will thank Dr. Yu Teng from Union Hospital of the Huazhong University of Science and Technology for the construction of the bone defect model. This work was supported by the National Natural Science Foundation of China (grant nos. 81071263 and 30870624), National High-Technology Research and Development Program of China (grant nos. 2011AA030105 and 2012CB933601), and International Science and Technology Cooperation Program of China (grant no. 0102011DFA31430).

Supplementary material

12011_2013_9763_MOESM1_ESM.pdf (173 kb)
ESM 1 (PDF 173 kb)


  1. 1.
    Khadka A, Li J, Li Y, Gao Y, Zuo Y, Ma Y (2011) Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect. J Craniofac Surg 22(5):1852–1858PubMedCrossRefGoogle Scholar
  2. 2.
    Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291PubMedCrossRefGoogle Scholar
  3. 3.
    Di Bella C, Farlie P, Penington AJ (2008) Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A 14(4):483–490PubMedCrossRefGoogle Scholar
  4. 4.
    Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M, Marzi I (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A 16(6):1961–1970PubMedCrossRefGoogle Scholar
  5. 5.
    Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T (2007) Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 80(1):85–93PubMedGoogle Scholar
  6. 6.
    Zhao X, Ong KJ, Ede JD, Stafford JL, Ng KW, Goss GG, Loo SC (2013) Evaluating the toxicity of hydroxyapatite nanoparticles in catfish cells and zebrafish embryos. Small 9(9–10):1734–1741PubMedCrossRefGoogle Scholar
  7. 7.
    Bagher Z, Rajaei F, Shokrgozar M (2012) Comparative study of bone repair using porous hydroxyapatite/beta-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect. Iran Biomed J 16(1):18–24PubMedGoogle Scholar
  8. 8.
    Yano K, Namikawa T, Uemura T, Hoshino M, Wakitani S, Takaoka K, Nakamura H (2012) Regenerative repair of bone defects with osteoinductive hydroxyapatite fabricated to match the defect and implanted with combined use of computer-aided design, computer-aided manufacturing, and computer-assisted surgery systems: a feasibility study in a canine model. J Orthop Sci 17(4):484–489PubMedCrossRefGoogle Scholar
  9. 9.
    Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan Z, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32(7):1826–1837PubMedCrossRefGoogle Scholar
  10. 10.
    Hu J, Li YF, Li Q, Zhu SS, Luo E, Li JH, Feng G, Liao YM (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31(34):9006–9014PubMedCrossRefGoogle Scholar
  11. 11.
    Evis Z, Webster TJ (2011) Nanosize hydroxyapatite: doping with various ions. Adv Appl Ceram 110(5):311–320CrossRefGoogle Scholar
  12. 12.
    Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24(25):4609–4620PubMedCrossRefGoogle Scholar
  13. 13.
    Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13(12):1199–1206PubMedCrossRefGoogle Scholar
  14. 14.
    Dallari D, Savarino L, Albisinni U, Fornasari P, Ferruzzi A, Baldini N, Giannini S (2012) A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials 33(1):72–79PubMedCrossRefGoogle Scholar
  15. 15.
    Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31(34):9006–9014PubMedCrossRefGoogle Scholar
  16. 16.
    Ferguson LR, Karunasinghe N, Zhu S, Wang AH (2012) Selenium and its’ role in the maintenance of genomic stability. Mutat Res 733(1–2):100–110PubMedGoogle Scholar
  17. 17.
    Zeng H, Cao JJ, Combs GF Jr (2013) Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 5(1):97–110PubMedCrossRefGoogle Scholar
  18. 18.
    Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268PubMedCrossRefGoogle Scholar
  19. 19.
    Hoeg A, Gogakos A, Murphy E, Mueller S, Kohrle J, Reid DM, Gluer CC, Felsenberg D, Roux C, Eastell R, Schomburg L, Williams GR (2012) Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 97(11):4061–4070PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163(1):9–17PubMedCrossRefGoogle Scholar
  21. 21.
    Kohrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26(7):944–984PubMedCrossRefGoogle Scholar
  22. 22.
    Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235PubMedCrossRefGoogle Scholar
  23. 23.
    Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13):2163–2174PubMedCrossRefGoogle Scholar
  24. 24.
    Ciobanu CS, Iconaru SL, Chifiriuc MC, Costescu A, Le Coustumer P, Predoi D. (2013) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. BioMed Res Int 2013 (2013), Article ID 916218, 10 pagesGoogle Scholar
  25. 25.
    Li Z, Yubao L, Yi Z, Lan W, Jansen JA (2010) In vitro and in vivo evaluation on the bioactivity of ZnO containing nano-hydroxyapatite/chitosan cement. J Biomed Mater Res A 93(1):269–279PubMedGoogle Scholar
  26. 26.
    Niu X, Fan Y, Liu X, Li X, Li P, Wang J, Sha Z, Feng Q (2011) Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(l-lactide)-based microsphere-scaffold delivery system. Artif Organs 35(7):E119–E128PubMedCrossRefGoogle Scholar
  27. 27.
    Wang YH, Ma J, Zhou L, Chen J, Liu YH, Qiu ZY, Zhang SM (2012) Dual functional selenium-substituted hydroxyapatite. Interface Focus 2(3):378–386PubMedCrossRefGoogle Scholar
  28. 28.
    Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533CrossRefGoogle Scholar
  30. 30.
    Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly(l-lactic acid) and poly(l-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446PubMedCrossRefGoogle Scholar
  31. 31.
    Cai Q, Shi G, Bei J, Wang S (2003) Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin. Biomaterials 24(4):629–638PubMedCrossRefGoogle Scholar
  32. 32.
    Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, Muller R, Seliktar D, Livne E (2013) Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials 34(12):2902–2910PubMedCrossRefGoogle Scholar
  33. 33.
    Ma J, Wang YH, Zhou L, Zhang SM (2013) Preparation and characterization of selenite substituted hydroxyapatite. Mat Sci Eng C 33(1):440–445CrossRefGoogle Scholar
  34. 34.
    Ma X, Wang Y, Guo H, Wang JT (2011) Nano-hydroxyapatite/chitosan sponge-like biocomposite for repairing of rat calvarial critical-sized bone defect. J Bioact Compat Polym 26(4):335–346CrossRefGoogle Scholar
  35. 35.
    Bouvier M, Chawla AS, Hinberg I (1991) In vitro degradation of a poly(ether urethane) by trypsin. J Biomed Mater Res 25(6):773–789PubMedCrossRefGoogle Scholar
  36. 36.
    Moody HR, Brown CP, Bowden JC, Crawford RW, McElwain DL, Oloyede AO (2006) In vitro degradation of articular cartilage: does trypsin treatment produce consistent results? J Anat 209(2):259–267PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL, Jiang X (2011) The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424PubMedCrossRefGoogle Scholar
  38. 38.
    Mukherjee DP, Tunkle AS, Roberts RA, Clavenna A, Rogers S, Smith D (2003) An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. J Biomed Mater Res B Appl Biomater 67(1):603–609PubMedCrossRefGoogle Scholar
  39. 39.
    Baran ET, Tuzlakoglu K, Salgado AJ, Reis RL (2004) Multichannel mould processing of 3D structures from microporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/engineering. J Mater Sci Mater Med 15(2):161–165PubMedCrossRefGoogle Scholar
  40. 40.
    Yazar M, Sarban S, Kocyigit A, Isikan UE (2005) Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res 106(2):123–132PubMedCrossRefGoogle Scholar
  41. 41.
    Canter PH, Wider B, Ernst E (2007) The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology 46(8):1223–1233PubMedCrossRefGoogle Scholar
  42. 42.
    Zwolak I, Zaporowska H (2012) Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol 28(1):31–46PubMedCrossRefGoogle Scholar
  43. 43.
    Rodriguez-Valencia C, Lopez-Alvarez M, Cochon-Cores B, Pereiro I, Serra J, Gonzalez P (2013) Novel selenium-doped hydroxyapatite coatings for biomedical applications. J Biomed Mater Res A 101(3):853–861PubMedGoogle Scholar
  44. 44.
    Shekkeris AS, Jaiswal PK, Khan WS (2012) Clinical applications of mesenchymal stem cells in the treatment of fracture non-union and bone defects. Curr Stem Cell Res Ther 7(2):127–133PubMedCrossRefGoogle Scholar
  45. 45.
    Bauer TW, Togawa D (2003) Bone graft substitutes: towards a more perfect union. Orthopedics 26(9):925–926PubMedGoogle Scholar
  46. 46.
    Kaipel M, Schutzenberger S, Schultz A, Ferguson J, Slezak P, Morton TJ, Van Griensven M, Redl H (2012) BMP-2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed-union rat model. J Orthop Res 30(10):1563–1569PubMedCrossRefGoogle Scholar
  47. 47.
    Silva RV, Camilli JA, Bertran CA, Moreira NH (2005) The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg 34(2):178–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yanhua Wang
    • 1
  • Peng Lv
    • 1
    • 2
    Email author
  • Zhe Ma
    • 1
  • Jingcheng Zhang
    • 1
  1. 1.Department of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Huazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations