Skip to main content
Log in

Effects of Different Sources and Levels of Zinc on H2O2-Induced Apoptosis in IEC-6 Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 μM, medium = 50 μM, and high = 100 μM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 μM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 μM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xu Z-r, Hu L, Cheng L-f et al (2010) Dihydrotestosterone protects human vascular endothelial cells from H2O2-induced apoptosis through inhibition of caspase-3, caspase-9 and p38 MAPK. Eur J Pharmacol 643:254–259

    Article  PubMed  CAS  Google Scholar 

  2. D'Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  Google Scholar 

  3. Ugu AC, Cig B, Espino J et al (2012) Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53:91–98

    Article  Google Scholar 

  4. Brunelle JK, Chandel NS (2002) Oxygen deprivation induced cell death: an update. Apoptosis 7:475–482

    Article  PubMed  CAS  Google Scholar 

  5. Liang D, Yang M, Guo B et al (2012) Zinc inhibits H2O2-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 148:420–429

    Article  PubMed  CAS  Google Scholar 

  6. Tang XQ, Feng JQ, Chen J et al (2005) Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res 105:57–64

    Article  Google Scholar 

  7. Uğuz AC, Naziroğlu M, Espino J et al (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232:15–23

    Article  PubMed  Google Scholar 

  8. Duffy JY, Miller CM, Rutschilling GL et al (2001) A decrease in intracellular zinc level precedes the detection of early indicators of apoptosis in HL-60 cells. Apoptosis 6:161–172

    Article  PubMed  CAS  Google Scholar 

  9. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  10. Oliver L, Vallette FM (2005) The role of caspases in cell death and differentiation. Drug Resist Updat 8:163–170

    Article  PubMed  CAS  Google Scholar 

  11. Nakashima T, Tanaka R, Yamashita Y et al (2008) Aranorosin and a novel derivative inhibit the anti-apoptotic functions regulated by Bcl-2. Biochem Biophys Res Commun 377:1085–1090

    Article  PubMed  CAS  Google Scholar 

  12. Guo B, Yang M, Liang D et al (2012) Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem 361:209–216

    Article  PubMed  CAS  Google Scholar 

  13. Schmitz I, Kirchhoff S, Krammer PH (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32:1123–1136

    Article  PubMed  CAS  Google Scholar 

  14. Cheng W-c, Leach KM, Hardwick JM (2008) Mitochondrial death pathways in yeast and mammalian cells. BBA-Mol Cell Res 1783:1272–1279

    CAS  Google Scholar 

  15. Lindsay J, Esposti MD, Gilmore AP (2011) Bcl-2 proteins and mitochondria—specificity in membrane targeting for death. BBA-Mol Cell Res 1813:532–539

    CAS  Google Scholar 

  16. Sun X-m, Bratton SB, Butterworth M et al (2002) Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem 277:11345–11351

    Article  PubMed  CAS  Google Scholar 

  17. Westphal D, Dewson G, Czabotar PE et al (2011) Molecular biology of Bax and Bak activation and action. BBA-Mol Cell Res 1813:521–531

    CAS  Google Scholar 

  18. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  19. Wellinghausen N, Kirchner H, Rink L (1997) The immunobiology of zinc. Immunol Today 20:519–521

    Article  Google Scholar 

  20. Gilabert ER, Ruiz E, Osorio C et al (1996) Effect of dietary zinc deficiency on reproductive function in male rats: biochemical and morphometric parameters. J Nutr Biochem 7:403–407

    Article  CAS  Google Scholar 

  21. Johnson FO, Gilbreath ET, Ogden L et al (2011) Reproductive and developmental toxicities of zinc supplemented rats. Reprod Toxicol 31:134–143

    Article  PubMed  CAS  Google Scholar 

  22. Kang X, Song Z, McClain CJ et al (2008) Zinc supplementation enhances hepatic regeneration by preserving hepatocyte nuclear factor-4α in mice subjected to long-term ethanol administration. Am J Pathol 172:916–925

    Article  PubMed  CAS  Google Scholar 

  23. Brun JF, Guintrand-Hugret R, Fons C et al (1995) Effects of oral zinc gluconate on glucose effectiveness and insulin sensitivity in humans. Biol Trace Elem Res 47:385–391

    Article  PubMed  CAS  Google Scholar 

  24. Kechrid Z, Hamdi M, Nazıroğlu M et al (2012) Vitamin D supplementation modulates blood and tissue zinc, liver glutathione and blood biochemical parameters in diabetic rats on a zinc-deficient diet. Biol Trace Elem Res 148:371–377

    Article  PubMed  CAS  Google Scholar 

  25. Song Y, Leonard SW, Traber MG, Ho E (2009) Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 139:1626–1631

    Article  PubMed  CAS  Google Scholar 

  26. Özcelik D, Nazıroglu M, Tunçdemir M et al (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150:342–349

    Article  PubMed  Google Scholar 

  27. Kontargiris E, Vadalouka A, Ragos V et al (2012) Zinc inhibits apoptosis and maintains NEP downregulation, induced by ropivacaine, in HaCaT cells. Biol Trace Elem Res 150:460–466

    Article  PubMed  Google Scholar 

  28. Schell TC, Kornegay ET (1996) Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J Anim Sci 74:1584–1593

    PubMed  CAS  Google Scholar 

  29. Crosera M, Bovenzi M, Maina G et al (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82:1043–1055

    Article  PubMed  CAS  Google Scholar 

  30. Wang B, Feng W, Wang M et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanoparticle Res 10:263–276

    Article  CAS  Google Scholar 

  31. Sinha R, Karan R, Sinha A et al (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520

    Article  PubMed  CAS  Google Scholar 

  32. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870

    Article  PubMed  CAS  Google Scholar 

  33. Sharma V, Shukla RK, Saxena N et al (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  PubMed  CAS  Google Scholar 

  34. Cilla A, Laparra JM, Alegría A et al (2011) Mineral and/or milk supplementation of fruit beverages helps in the prevention of H2O2-induced oxidative stress in Caco-2 cells. Nutr Hosp 26(3):614–621

    PubMed  CAS  Google Scholar 

  35. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    PubMed  CAS  Google Scholar 

  36. Girotti AW, Thomas JP, Jordan JE (1985) Inhibitory effect of zinc (II) on free radical lipid peroxidation in erythrocyte membranes. Free Radic Bio Med 1:395–401

    Article  CAS  Google Scholar 

  37. Kilari S, Pullakhandam R, Nair KM (2010) Zinc inhibits oxidative stress-induced iron signaling and apoptosis in Caco-2 cells. Free Radic Bio Med 48:961–968

    Article  CAS  Google Scholar 

  38. Cheng X-r, Zhang L, Hu J-j et al (2007) Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int 31:438–443

    Article  PubMed  CAS  Google Scholar 

  39. Untergasser G, Rumpold H, Plas E et al (2000) High levels of zinc ions induce loss of mitochondrial potential and degradation of antiapoptotic Bcl-2 Protein in in vitro cultivated human prostate epithelial cells. Biochem Biophys Res Commun 279:607–614

    Article  PubMed  CAS  Google Scholar 

  40. Ganju N, Eastman A (2003) Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ 10:652–661

    Article  PubMed  CAS  Google Scholar 

  41. Oltval ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  Google Scholar 

  42. Korsmeyer SJ, Shutter JR, Veis DJ et al (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4:327–332

    PubMed  CAS  Google Scholar 

  43. Jänicke RU, Sprengart ML, Wati MR et al (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9936

    Article  PubMed  Google Scholar 

  44. Almeida RD, Manadas BJ, Melo CV et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343

    Article  PubMed  CAS  Google Scholar 

  45. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    Article  PubMed  CAS  Google Scholar 

  46. Chen X, Zhang Q, Cheng Q et al (2009) Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem 332:85–93

    Article  PubMed  CAS  Google Scholar 

  47. Demelash A, Karlsson JO, Nilsson M et al (2004) Selenium has a protective role in caspase-3-dependent apoptosis induced by H2O2 in primary cultured pig thyrocytes. Eur J Endocrinol 150:841–849

    Article  PubMed  CAS  Google Scholar 

  48. Cai L, Wang H, Li Q et al (2008) Salidroside inhibits H2O2-induced apoptosis in PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Acta Biochim Biophys Sin 40:796–802

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, L., Chen, J., Peng, Q. et al. Effects of Different Sources and Levels of Zinc on H2O2-Induced Apoptosis in IEC-6 Cells. Biol Trace Elem Res 155, 132–141 (2013). https://doi.org/10.1007/s12011-013-9759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9759-8

Keywords

Navigation