Advertisement

Biological Trace Element Research

, Volume 155, Issue 1, pp 114–118 | Cite as

Correlation Between Endodontic Broken Instrument and Nickel Level in Urine

  • Mohammad Ali SaghiriEmail author
  • Nader Sheibani
  • Franklin Garcia-Godoy
  • Armen Asatourian
  • Peiman Mehriar
  • Mark Scarbecz
Article

Abstract

This study aims to evaluate the correlation between the presences of separated endodontic instrument inside the dental canal and the nickel (Ni) level in the urine samples of subjected patients. Same-gendered and near-aged participants were selected and were instructed to collect their urine in sterile nickel-free plastic containers. The procedures were carried out in the office, and samples were stored in low-temperature cooler for 1 day and then they were transferred to the laboratory for electrothermal atomic absorption spectrometry. The level of Ni was measured and the correlation coefficient was calculated. Data were analyzed using t tests, Pearson’s correlation coefficients, and linear regression analysis, at a level of significance P < 0.05. The statistical analysis has showed significant difference in Ni level between endodontic and control groups (P < 0.05). There was no correlation between Ni level in urine and the age or time period of broken instrument inside the canal; however, Ni level of urine and the age of participants in experimental group has demonstrated a positive correlation. The amount of Ni element can be increased in the urine of patients who have experienced broken endodontic instrument inside the dental canal. However, there is no positive correlation between the remaining pieces of instruments inside the canal and the elevation of nickel amount in urine during the tested time period. This issue suggested that the aging of remaining broken instrument inside the canal does not show any remarkable concern regarding the Ni elevation in the urine excreted by an individual.

Keywords

Allergen Broken instrument Fatigue fracture NiTi rotary instrument Nickel toxicity 

Notes

Acknowledgments

We are indebted to the late Professor Kamal Asgar for the provision of laboratory facilities. Also, special thanks go to Professor Hajar Afsar Ladjvardi, Dr. Amir Nazari and Ms. Neda Bayati for all of their contributions to this research.

Conflict of Interest

The authors affirm that they have no financial affiliation or involvement with any commercial organization with direct financial interest in the subject or materials discussed in this manuscript and deny any conflicts of interest related to this study.

References

  1. 1.
    Uthus EO, Seaborn CD (1996) Deliberations and evaluations of the approaches, endpoints and paradigms for dietary recommendations of the other trace elements. J Nutr 126:2452S–2459SPubMedGoogle Scholar
  2. 2.
    Schmalz G, Garhammer P (2002) Biological interactions of dental alloys with oral tissues. Dent Mater 18:396–406PubMedCrossRefGoogle Scholar
  3. 3.
    Setcos JC, Babaei-Mahani A, Silvio LD, Mjör IA, Wilson NHF (2006) The safety of nickel containing dental alloys. Dent Mater 22:1163–1168. doi: 10.1016/j.dental.2005.11.033 PubMedCrossRefGoogle Scholar
  4. 4.
    Faccioni F, Franceschetti P, Cerpelloni M, Fracasso ME (2003) In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Amer J Orthod Dentofac Orthop 124:687–693. doi: 10.1016/j.ajodo.2003.09.010 CrossRefGoogle Scholar
  5. 5.
    Noda M, Wataha J, Lockwood P, Volkmann K, Kaga M, Sano H (2002) Low-dose, long-term exposures of dental material components alter human monocyte metabolism. J Biomed Mater Res 62:237–243. doi: 10.1002/jbm.10065 PubMedCrossRefGoogle Scholar
  6. 6.
    Wataha J, Lockwood P, Schedle A, Noda M, Bouillaguet S (2002) Ag, Cu, Hg and Ni ions alter the metabolism of human monocytes during extended low-dose exposures. J Oral Rehab 29:133–139. doi: 10.1046/j.1365-2842.2002.00845 CrossRefGoogle Scholar
  7. 7.
    Templeton DM, Sunderman FW Jr, Herberc RFM (1994) Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: evaluation according to the TRACY protocol. Sci Total Environ 148:243–251. doi: 10.1016/0048-9697(94)90400-6 PubMedCrossRefGoogle Scholar
  8. 8.
    Iqbal MK, Maggiore F, Suh B, Edwards KR, Kang J, Kim S (2003) Comparison of apical transportation in four Ni-Ti rotary instrumentation techniques. J Endod 29:587–591. doi: 10.1097/00004770-200309000-00011 PubMedCrossRefGoogle Scholar
  9. 9.
    Schäfer E, Zapke K (2000) A comparative scanning electron microscopic investigation of the efficacy of manual and automated instrumentation of root canals. J Endod 26:660–664. doi: 10.1097/00004770-200011000-00007 PubMedCrossRefGoogle Scholar
  10. 10.
    Short JA, Morgan LA, Baumgartner JC (1997) A comparison of canal centering ability of four instrumentation techniques. J Endod 23:503–507. doi: 10.1016/S0099-2399(97)80310-X PubMedCrossRefGoogle Scholar
  11. 11.
    Gambarini G (2001) Cyclic fatigue of ProFile rotary instruments after prolonged clinical use. Int Endod J 34:386–389. doi: 10.1046/j.1365-2591.2001.00259 PubMedCrossRefGoogle Scholar
  12. 12.
    Al–Fouzan K (2003) Incidence of rotary ProFile instrument fracture and the potential for bypassing in vivo. Int Endod J 36:864–867. doi: 10.1111/j.1365-2591.2003.00733 PubMedCrossRefGoogle Scholar
  13. 13.
    Ankrum MT, Hartwell GR, Truitt JE (2004) K3 Endo, ProTaper, and ProFile systems: breakage and distortion in severely curved roots of molars. J Endod 30:234–237. doi: 10.1097/00004770-200404000-00013 PubMedCrossRefGoogle Scholar
  14. 14.
    Crump M, Natkin E (1970) Relationship of broken root canal instruments to endodontic case prognosis: a clinical investigation. J Amer Dent Assoc 80:1341–1347, PMID:5266127Google Scholar
  15. 15.
    Hülsmann M (1993) Methods for removing metal obstructions from the root canal. Endod Dent Traumatol 9:223–237. doi: 10.1111/j.1600-9657.1993.tb00278.x PubMedCrossRefGoogle Scholar
  16. 16.
    Ruddle CJ (1997) Micro-endodontic nonsurgical retreatment. Dent Clin North Am 41:429–454, PMID:9248684PubMedGoogle Scholar
  17. 17.
    Ward JR, Parashos P, Messer HH (2003) Evaluation of an ultrasonic technique to remove fractured rotary nickel–titanium endodontic instruments from root canals: an experimental study. J Endod 29:756–763. doi: 10.1097/00004770-200311000-00017 PubMedCrossRefGoogle Scholar
  18. 18.
    Ruddle CJ (2002) Broken instrument removal: the endodontic challenge. Dent today 21:70–81PubMedGoogle Scholar
  19. 19.
    Fors U, Berg JO (1986) Endodontic treatment of root canals obstructed by foreign objects. Int Endod J 19:2–10. doi: 10.1111/j.1365-2591.1986.tb00884 PubMedCrossRefGoogle Scholar
  20. 20.
    Gaffney JL, Lehman JW, Miles MJ (1981) Expanded use of the ultrasonic scaler. J Endod 7:228–229. doi: 10.1016/S0099-2399(81)80180 PubMedCrossRefGoogle Scholar
  21. 21.
    Nagai O, Tani N, Kayaba Y, Kodama S, Osada T (2007) Ultrasonic removal of broken instruments in root canals. Int Endod J 19:298–2304. doi: 10.1111/j.1365-2591.1986.tb00493 CrossRefGoogle Scholar
  22. 22.
    Souter NJ, Messer HH (2005) Complications associated with fractured file removal using an ultrasonic technique. J Endod 31:450–452. doi: 10.1097/01.don.0000148148.98255.15 PubMedCrossRefGoogle Scholar
  23. 23.
    Suter B, Lussi A, Sequeira P (2005) Probability of removing fractured instruments from root canals. Int Endod J 38:112–123. doi: 10.1111/j.1365-2591.2004.00916 PubMedCrossRefGoogle Scholar
  24. 24.
    Ruddle CJ (2004) Nonsurgical retreatment. J Endod 30:827–845. doi: 10.1097/01.don.0000145033.15701.2d PubMedCrossRefGoogle Scholar
  25. 25.
    Spili P, Parashos P, Messer HH (2005) The impact of instrument fracture on outcome of endodontic treatment. J Endod 31:845–850. doi: 10.1097/01.don.0000164127.62864.7c PubMedCrossRefGoogle Scholar
  26. 26.
    Torabinejad M, Walton RE (2002) Principles and practice of endodontics. Saunders, PhiladelphiaGoogle Scholar
  27. 27.
    Amini F, Rakhshan V, Mesgarzadeh N (2012) Effects of long-term fixed orthodontic treatment on salivary nickel and chromium levels: a 1-year prospective cohort study. Biol Trace Elem Res 150:15–20. doi: 10.1007/s12011-012-9457-y PubMedCrossRefGoogle Scholar
  28. 28.
    Menezes LM, Quintão CA, Bolognese AM (2007) Urinary excretion levels of nickel in orthodontic patients. Amer J Orthod Dentofac Orthop 131:635–638. doi: 10.1016/j.ajodo.2005.07.022 CrossRefGoogle Scholar
  29. 29.
    Leikin JB, Paloucek FP (2008) Poisoning and toxicology handbook. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  30. 30.
    Schriver WR, Shereff RH, Domnitz JM, Swintak EF, Civjan S (1976) Allergic response to stainless steel wire. Oral Sur Oral Med Oral Pathol 42:578–581. doi: 10.1016/0030-4220(76)90207-3 CrossRefGoogle Scholar
  31. 31.
    Smith-Sivertsen T, Lund E, Thomassen Y, Norseth T (1997) Human nickel exposure in an area polluted by nickel refining: The S⊘r-Varanger study. Arch Environ Health Int J 52:464–671. doi: 10.1080/00039899709602225 CrossRefGoogle Scholar
  32. 32.
    Sunderman FW, Hopfer SM, Sweeney KR, Marcus AH, Most BM, Creason J et al (1989) Nickel absorption and kinetics in human volunteers. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY). Roy Soc Med 191:11. doi: 10.3181/00379727-191-42881 Google Scholar
  33. 33.
    Shabalovskaya SA (2002) Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Biomed Mater Eng 12:69–109PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohammad Ali Saghiri
    • 1
    • 2
    Email author
  • Nader Sheibani
    • 1
  • Franklin Garcia-Godoy
    • 3
  • Armen Asatourian
    • 2
  • Peiman Mehriar
    • 2
  • Mark Scarbecz
    • 3
  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Wisconsin, school of Medicine and Public HealthMadisonUSA
  2. 2.Kamal Asgar Research CenterEncinoUSA
  3. 3.Department of Bioscience ResearchUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations