Advertisement

Biological Trace Element Research

, Volume 154, Issue 2, pp 190–195 | Cite as

Nickel-Induced Structural and Functional Alterations in Porcine Granulosa Cells In Vitro

  • Jiřina KročkováEmail author
  • Peter Massányi
  • Alexander V. Sirotkin
  • Norbert Lukáč
  • Anton Kováčik
Article

Abstract

The present study was aimed at investigating the effect of nickel chloride (NiCl2) on secretion of progesterone (P), ultrastructure and apoptosis in porcine granulosa cells. NiCl2 was added to the cells to achieve a Ni2+ concentration of 62.5, 125, 250, 500 and 1,000 μmol/L. A control group contained no NiCl2 addition. Quantification of P was performed directly from aliquots of the media from control and treated porcine granulosa cells after 48 h of culture using radioimmunoassay. Quantification of apoptotic cells was performed using terminal deoxynucleotidyl transferase dUTP nick end labelling assay, and ultrastructural changes were analyzed using transmission electron microscopy. A concentration-dependent depletion of P production was observed significantly for 1,000 μmol/L NiCl2. The percentage of apoptotic cells was increased in all experimental groups significantly only after addition of 1,000 μmol/L NiCl2. After addition of ≥250 μmol/L NiCl2, a higher incidence of euchromatin was observed. Also, lipid droplets and vacuoles in the cytoplasm increased after addition of ≥250 μmol/L NiCl2. NiCl2 induced the decrease in numbers of mitochondria and smooth endoplasmic reticulum after treatment with ≥500 μmol/L NiCl2. Our findings suggest a negative effect of NiCl2 on steroidogenesis and apoptosis as well as ultrastructure of porcine granulosa cells.

Keywords

Granulosa cell Nickel Apoptosis Progesterone Ultrastructure 

Notes

Acknowledgments

We would like to express our gratitude to Dr. Shubhadeep Roychoudhury for language corrections. This study was supported by VEGA Scientific Grant 1/0532/11 from the Ministry of Education of Slovak Republic.

References

  1. 1.
    Wu HC, Yang CY, Hung DZ, Su CC, Chen KL, Yen CC, Ho TJ, Su YC, Huang CF, Chen CH, Tsai LM, Chen YW (2011) Nickel(II) induced JNK activation-regulated mitochondria-dependent apoptotic pathway leading to cultured rat pancreatic β-cell death. Toxicology 289:103–111PubMedCrossRefGoogle Scholar
  2. 2.
    Agency for Toxic Substances and Disease Registry (1997) Toxicological profile for nickel. Public Health Service. Buford Hwy Ne, AtlantaGoogle Scholar
  3. 3.
    International Programme on Chemical Safety (IPCS) (1991) Environmental health criteria 108: nickel. WHO, Geneva.Google Scholar
  4. 4.
    Bunn HF, Gu J, Huang LE, Park JW, Zhu H (1998) Erythropoietin: a model system for studying oxygen-dependent gene regulation. J Exp Biol 201:1197–1201PubMedGoogle Scholar
  5. 5.
    National Academy of Sciences (NAS) (2005) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington DCGoogle Scholar
  6. 6.
    Formicki G, Greń A, Stawarz R (2011) Metals in different kinds of human diet. In: Formicki G, Greń A, Stawarz R (eds) Xenobiotics: environmental exposure, toxicity and physiological response. Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów, pp 60–73Google Scholar
  7. 7.
    Goyer RA (1991) Toxic effects of metals. In: Amdur MO, Doull JD, Klaassen CD (eds) Casarett and Doull's toxicology, 4th edn. Pergamon Press, New York, pp 623–680Google Scholar
  8. 8.
    Pietruska JR, Liu X, Smith A, McNeil K, Weston P, Zhitkovich A, Hurt R, Kane AB (2011) Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci 124:138–148PubMedCrossRefGoogle Scholar
  9. 9.
    Ferguson CJ, Wareing M, Ward DT, Green R, Smith CP, Riccardi D (2001) Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am J Physiol Renal Physiol 280:803–814Google Scholar
  10. 10.
    Forgacs Z, Massanyi P, Lukac N, Somosy Z (2012) Reproductive toxicology of nickel—review. J Environ Sci Health Part A–Toxic/Hazardous Substances Environ Eng 47:1249–1260Google Scholar
  11. 11.
    Agency for Toxic Substances and Disease Registry (1988)Google Scholar
  12. 12.
    Coogan TP, Latta DM, Snow ET, Costa M (1989) Toxicity and carcinogenicity of nickel compounds. Crit Rev Toxicol 19:341–384PubMedCrossRefGoogle Scholar
  13. 13.
    Chashschin VP, Artunina PA, Norseth T (1994) Congenital defects, abortion and other health effects in nickel refinery workers. Sci Total Environ 148:287–291PubMedCrossRefGoogle Scholar
  14. 14.
    Severa J, Vyskocil A, Fiala Z, Cizkova M (1995) Distribution of nickel in body fluids and organs of rats chronically exposed to nickel sulphate. Hum Exp Toxicol 14:955–958PubMedCrossRefGoogle Scholar
  15. 15.
    Toman R, Massanyi P, Adamkovicova M, Lukac N, Cabaj M, Martiniakova M (2012) Quantitative histological analysis of the mouse testis after the long-term administration of nickel in feed. J Environ Sci Health A 47:1–8Google Scholar
  16. 16.
    Lukac N, Bardos L, Stawarz R, Roychoudhury S, Makarevich AV, Chrenek P, Danko J, Massanyi P (2011) In vitro effect of nickel on bovine spermatozoa motility and annexin V-labeled membrane changes. J Appl Toxicol 31:144–149PubMedGoogle Scholar
  17. 17.
    Mazensky D, Danko J, Petrovova E, Luptakova L, Radonak J, Schusterova I (2012) Arterial arrangement of the cervical spinal cord in rabbit. Anat Sci Inter 87:155–159CrossRefGoogle Scholar
  18. 18.
    Massanyi P, Uhrin V, Toman R, Pivko J, Lukac N, Forgacs Z, Somosy Z, Fabis M, Danko J (2005) Ultrastructural changes of ovaries in rabbits following cadmium administration. Acta Vet Brno 74:29CrossRefGoogle Scholar
  19. 19.
    Danko J, Simon F, Artimova J (2011) Nomina anatomica veterinaria. UVFL v Kosiciach, KosiceGoogle Scholar
  20. 20.
    Danko J (1997) Ovarian mass, size and number of follicles in postparturient ewes. Acta Vet Brno 66:71CrossRefGoogle Scholar
  21. 21.
    Kolesarova A, Capcarova M, Sirotkin A, Medvedova M, Kovacik J (2010) Cobalt-induced changes in the IGF-I and progesterone release, expression of proliferation- and apoptosis-related peptides in porcine ovarian granulosa cells in vitro. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 45:810–817CrossRefGoogle Scholar
  22. 22.
    Kolesarova A, Capcarova M, Sirotkin A, Medvedova M, Kovacik J (2011) In vitro assessment of silver effect on porcine ovarian granulosa cells. J Trace Elem Med Biol 25:166–170PubMedCrossRefGoogle Scholar
  23. 23.
    Zemanova-Krockova J, Massanyi P, Sirotkin AV, Pivko J, Makarevich AV, Lukac N, Capcarova M, Toman R, Polakova Z (2011) Nickel induced structural and functional alterations in mouse Leydig cells in vitro. J Trace Elem Med Biol 25:14–18CrossRefGoogle Scholar
  24. 24.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208PubMedCrossRefGoogle Scholar
  25. 25.
    Forgacs Z, Paksy K, Varga B, Lazar P, Tatrai E (1997) Effects of NiSO4 on the ovarian function in rats. Central Europ J Occup Environ Med 48–57Google Scholar
  26. 26.
    Revesz C, Forgacs Z, Lazar P, Matyas S, Rajczy K, Krizsa F, Bernard A, Gati I (2004) Effect of nickel (Ni2+) on primary human ovarian granulosa cells in vitro. Toxicology Mechanisms and Methods 14:287–292PubMedCrossRefGoogle Scholar
  27. 27.
    Haspel J, Sunderman FWJ, Hofper SM, Henjum DC, Brandt-Rauf PW, Weinstein IB, Nishimura S, Yamaizumi Z, Pincus MR (1993) A nickel-binding serine, pNiXa, induces maturation of Xenopus oocytes and shows synergism with oncogenic ras-p21 protein. Res Commun Chem Pathol Pharmacol 79:131–140PubMedGoogle Scholar
  28. 28.
    Zhao J, Bowman L, Zhang X, Shi X, Jiang B, Castranova V, Ding M (2009) Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J Nanobiotechnol 7:2CrossRefGoogle Scholar
  29. 29.
    Jin YT, Wu YH, Hu FL, Hu XY (2009) Transformation and apoptosis of NIH/3T3 cells treated with nickel-smelting fumes. J Toxicol Environ Health A 72:733–739PubMedCrossRefGoogle Scholar
  30. 30.
    Wang YF, Shyu HW, Chang YC, Tseng WC, Huang YL, Lin KH, Chou MC, Liu HL, Chen CY (2012) Nickel(II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway. Toxicol Appl Pharmacol 259:177–186PubMedCrossRefGoogle Scholar
  31. 31.
    Seddiqui MA, Ahamed M, Ahmad J, Majeed Khan MA, Musarrat J, Al-Khedhairy AA, Alrokayan SA (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50:641–647CrossRefGoogle Scholar
  32. 32.
    Su L, Deng Y, Zhang Y, Li C, Zhang R, Sun Y, Zhang K, Li J, Yao S (2011) Protective effects of grape seed procyanidin extract against nickel sulfate-induced apoptosis and oxidative stress in rat testes. Toxicol Mech Methods 21:487–494PubMedCrossRefGoogle Scholar
  33. 33.
    Ahamed M (2011) Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 25:930–936PubMedCrossRefGoogle Scholar
  34. 34.
    Dan J, Xingru Z, Long Z, Zhang Y, Huanming Z (2008) Inhibitory effects of NiSO4 on proliferation of lens epithelial cells. Chinese Ophthalmic Research 26:455–457Google Scholar
  35. 35.
    Caicedo M, Jacobs JJ, Reddy A, Hallab NJ (2008) Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+, Be2+, Co2+, Cr 3+, Cu2+, Fe3+, Mo5+, Nb 5+, Zr2+. J Biomed Mater Res Part A 86:905–913CrossRefGoogle Scholar
  36. 36.
    Arsalane K, Hildebrand HF, Martinez R, Wallaert B, Voisin C (1994) Ultrastructural and biochemical changes in alveolar macrophages exposed to nickel hydroxy carbonate. Sci Total Environ 148:175–183PubMedCrossRefGoogle Scholar
  37. 37.
    Lin KC, Chou IN (1990) Studies on the mechanism of Ni2+-induced cell injury: I. Effects of Ni2+ on microtubules. Toxicol Appl Pharmacol 106:209–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jiřina Kročková
    • 1
    Email author
  • Peter Massányi
    • 1
  • Alexander V. Sirotkin
    • 2
  • Norbert Lukáč
    • 1
  • Anton Kováčik
    • 1
  1. 1.Department of Animal PhysiologySlovak University of Agriculture in NitraNitraSlovak Republic
  2. 2.Animal Production Research Centre NitraLuziankySlovak Republic

Personalised recommendations