Biological Trace Element Research

, Volume 154, Issue 2, pp 226–233 | Cite as

Biomonitoring with Honeybees of Heavy Metals and Pesticides in Nature Reserves of the Marche Region (Italy)

  • Sara Ruschioni
  • Paola RioloEmail author
  • Roxana Luisa Minuz
  • Mariassunta Stefano
  • Maddalena Cannella
  • Claudio Porrini
  • Nunzio Isidoro


The aim of this study was to carry out biomonitoring with honeybees (Apis mellifera L.) to assess the presence of pesticides and heavy metals (cadmium, chromium, nickel, lead) in all of the ten nature reserves of the Marche Region (central–eastern Italy). The study was carried out during the spring and summer seasons when the honeybees were active, over 3 years (2008–2010). Twenty-two colonies of honeybees bred in hives were used. Samples of live and dead honeybees and of honey were collected from 11 sampling stations from May to October in each year. No pesticide pollution was found. Significant differences in heavy metal concentrations were found among years, months and sites, and in particular situations. The analysis reveals that high heavy-metal concentrations occurred exclusively in live honeybees. For the seasonal averages, the most detected heavy metal was chromium, which exceeded the threshold more often than for the other elements, followed by cadmium and lead; nickel never exceeded the threshold. The data are discussed with an evaluation of the natural and anthropic sources taken from the literature and from local situations that were likely to involve heavy metal pollution.


Honeybee Biomonitoring Heavy metal Pesticide Nature Reserves 



This study was supported by Programma Triennale Regionale Aree protette Regione Marche, 2008–2010, within the project “Use of Apis mellifera in biomonitoring of Nature Reserves.” The comments and suggestions made by three anonymous reviewers helped us to improve this manuscript.

Supplementary material

12011_2013_9732_MOESM1_ESM.docx (199 kb)
ESM 1 (DOCX 198 kb)


  1. 1.
    Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21PubMedCrossRefGoogle Scholar
  2. 2.
    Conti ME, Botrè F (2001) Honeybees and their products as potential bioindicators of heavy metals contamination. Environ Monit Assess 69:267–282PubMedCrossRefGoogle Scholar
  3. 3.
    Rühling Å (1994) Atmospheric heavy metal deposition in Europe—estimations based on moss analysis. NORD 9, Nordic Counsil of Ministers. AKA-Print, A/S, ArhusGoogle Scholar
  4. 4.
    Puckett KJ (1988) Bryophytes and lichens as monitors of metal deposition. Biblioth Lichenol 30:231–267Google Scholar
  5. 5.
    Wolterbeek HT, Bode P (1995) Strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Sci Total Environ 176:33–43CrossRefGoogle Scholar
  6. 6.
    Stöcker G (1980) Zu einigen theoretischen und methodischen aspekten der bioindikation In: Schubert R, Schuh J (ed) Bioindikation 1. Methodische und theoretische grundlagen der bioindikation. Martin Luther Universität Halle-Wittenberg, pp 10–21Google Scholar
  7. 7.
    Lambert O, Piroux M, Puyo S, Thorin C, Larhantec M, Delbac F, Pouliquen H (2012) Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut 170:254–259PubMedCrossRefGoogle Scholar
  8. 8.
    Atkins EL, Kellum D, Atkins K (1981) Reducing pesticides hazard to honey bees: mortality prediction techniques and integrated management strategies. Division of Agricultural Sciences, University of California, Leaflet 2883Google Scholar
  9. 9.
    Celli G (1983) L’ape come insetto test della salute di un territorio. In: Arzone A, Conti M, Currado I, Marletto F, Pagiano G, Ugolini A, Vidano C (ed) Atti XIII Congresso Nazionale Italiano di Entomologia. Sestriere, Torino, Italy, pp 637–644Google Scholar
  10. 10.
    Mayer DF, Lunden JD (1986) Toxicity of fungicides and an acaricide to honeybees (Hymenoptera: Apidae) and their effects on bee foraging behavior and pollen viability on blooming apples and pears. Environ Entomol 15:1047–1049Google Scholar
  11. 11.
    Mayer DF, Johansen CA, Lunden JD, Rathbone L (1987) Bee hazard of insecticides combined with chemical stickers. Am Bee J 127:493–495Google Scholar
  12. 12.
    Celli G, Porrini C, Tiraferri S (1988) Il problema degli apicidi in rapporto ai principi attivi responsabili (1983-1986). In: Brunelli A, Foschi S (ed) Atti Giornate Fitopatologiche, Vol. 2. Lecce, Italy, pp 257–268Google Scholar
  13. 13.
    Celli G, Porrini C (1991) L’ape, un efficace bioindicatore dei pesticidi. Le Scienze 274:42–54Google Scholar
  14. 14.
    Celli G, Porrini C, Baldi M, Ghigli E (1991) Pesticides in Ferrara Province: two years’ monitoring with honeybees (1987-1988). Ethol Ecol Evol 1:111–115CrossRefGoogle Scholar
  15. 15.
    Porrini C, Colombo V, Celli G (1996) The honey bee (Apis mellifera L.) as pesticide bioindicator. Evaluation of the degree of pollution by means of environmental hazard indexes. In: Proceedings XX International Congress of Entomology, Firenze, Italy, p. 444Google Scholar
  16. 16.
    Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18CrossRefGoogle Scholar
  17. 17.
    Celli G, Porrini C, Frediani D, Pinzauti M (1987) Api e piombo in città (nota preventiva). In: Bufalari V (ed) Atti del convegno: "Qualità dell'aria indicatori biologici api e piante", Firenze, Italy, pp 11–45Google Scholar
  18. 18.
    Celli G, Porrini C, Raboni F (1988) Monitoraggio con api della presenza dei ditiocarbammati nell'ambiente (1983-1986). Boll dell’Istituto di Entomologia dell’ Università degli Studi di Bologna 43:195–205Google Scholar
  19. 19.
    Crane E (1984) Bees, honey and pollen as indicators of metals in the environment. Bee World 55:47–49Google Scholar
  20. 20.
    Fakhim-Zadeh K, Lodenius M (2000) Schwermetalle im honig, pollen und den honigbienen finnlands. Apiacta 35:85–95Google Scholar
  21. 21.
    Leita L, Muhlbachova G, Cesco S, Barbattini R, Mondini C (1996) Investigation of the use of honeybees and honeybee products to assess heavy metals contamination. Environ Monit Assess 43:1–9CrossRefGoogle Scholar
  22. 22.
    Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metals (Hg, Cr, Cd and Pb) contamination in urban areas and natural reserves: honeybees as bioindicators. Biol Trace Elem Res 140:170–176PubMedCrossRefGoogle Scholar
  23. 23.
    Porrini C, Ghini S, Girotti S, Sabatini AG, Gattavecchia E, Celli G (2002) Use of honeybees as bioindicators of environmental pollution in Italy. In: Devillers J, Pham-Delègue MH (eds) Honeybees: estimating the environmental impact of chemicals. Taylor & Francis, London, pp 186–247Google Scholar
  24. 24.
    Satta A, Verdinelli M, Ruiu L, Buffa F, Salis S, Sassu A, Floris I (2012) Combination of beehive matrices analysis and ant biodiversity to study heavy metal pollution impact in a post-mining area (Sardinia, Italy). Environ Sci Pollut Res 19:3977–3988CrossRefGoogle Scholar
  25. 25.
    Stein K, Umland F (1987) Mobile und immobile probensammlung mit hilfe von bienen und birken. Fresenius Z Anal Chem 327:132–141CrossRefGoogle Scholar
  26. 26.
    van der Steen JJM, de Kraker J, Grotenhuis T (2012) Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.). Environ Monit Assess 184:4119–4126PubMedCrossRefGoogle Scholar
  27. 27.
    Zhelyazkova I, Marinova M, Gurgulova K (2004) Changes in the quantity of heavy metals in the haemolymph of worker bees fed micro-element contaminated sugar solution. Uludag Bee J 4:77–80Google Scholar
  28. 28.
    Porrini C, Sabatini AG, Girotti S, Ghini S, Medrzycki P, Grillenzoni F, Bortolotti L, Gattavecchia E, Celli G (2003) Honeybees and bee products as monitors of the environmental contamination. Apiacta 38:63–70Google Scholar
  29. 29.
    Celli G, Porrini C, Radeghieri P, Sabatini AG, Marcazzan GL, Colombo R, Barbattini R, Greatti M, D’Agaro M (1996) Honeybees (Apis mellifera L.) as bioindicators for the presence of pesticide in the agroecosystem. Field test. Insect Soc Life 1:207–212Google Scholar
  30. 30.
    Pilling ED, Jepson PC (1993) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic Sci 39:293–297CrossRefGoogle Scholar
  31. 31.
    Komarnicki GJK (2005) Lead and cadmium in indoor air and the urban environment. Environ Pollut 136:47–61PubMedCrossRefGoogle Scholar
  32. 32.
    Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15:375–382Google Scholar
  33. 33.
    Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283PubMedCrossRefGoogle Scholar
  34. 34.
    Accorti M, Luti F, Tarducci F (1991) Methods for collecting data on natural mortality in bee. Ethol Ecol Evol 1:123–126CrossRefGoogle Scholar
  35. 35.
    Pisani A, Protano G, Riccobono F (2008) Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem 107:1553–1560CrossRefGoogle Scholar
  36. 36.
    Roman A (2010) Levels of copper, selenium, lead, and cadmium in forager bees. Pol J Environ Stud 19:663–669Google Scholar
  37. 37.
    Istat (2012) Distribuzione per uso agricolo dei prodotti fitosanitari. Comunicato stampa, 2 ottobre 2012. Accessed 14 April 2013
  38. 38.
    Devillers J (2002) The ecological importance of honeybees and their relevance to ecotoxicology. In: Devillers J, Pham-Delègue MH (eds) Honeybees: estimating the environmental impact of chemicals. Taylor & Francis, London, pp 1–11CrossRefGoogle Scholar
  39. 39.
    Seigneur C, Constantinou E (1995) Chemical kinetics mechanism for atmospheric chromium. Environ Sci Technol 29:222–231PubMedCrossRefGoogle Scholar
  40. 40.
    World Bank (2002) New ideas in pollution regulation (NIPR). Accessed 21 December 2012
  41. 41.
    Soresen MA, Jersen PD, Walton WE, Trumble JT (2006) Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae). Environ Pollut 144:759–764CrossRefGoogle Scholar
  42. 42.
    Peterson PJ, Alloway BJ (1979) Cadmium in soils and vegetation. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium, vol 2. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 45–92Google Scholar
  43. 43.
    Barcelo J, Poschenrieder C (1992) Respuestas de las plantas a la contaminacion por metales pesados. Suelo y Planta 2(2):345–361Google Scholar
  44. 44.
    Yaaqub RR, Davies TD, Jickells TD, Miller JM (1991) Trace elements in daily collected aerosols at a site in south-eastern England. Atmos Environ 25:985–996CrossRefGoogle Scholar
  45. 45.
    Harrison RM, Williams CR (1982) Airborne cadmium, lead and zinc at rural and urban sites in north-west England. Atmos Environ 16:2669–2681CrossRefGoogle Scholar
  46. 46.
    Millward GE, Kadama S, Jha AN (2012) Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis. Environ Pollut 162:406–412PubMedCrossRefGoogle Scholar
  47. 47.
    Clayton GD, Clayton FE (1994) Patty’s industrial hygiene and toxicology. Wiley-Interscience Publication, New YorkGoogle Scholar
  48. 48.
    Grandjean P (1984) Human exposure to nickel. IARC Sci Publ 53:469–485PubMedGoogle Scholar
  49. 49.
    APAT (2010) Annuario dei dati ambientali. Edizione 2010. Accessed 14 April 2013
  50. 50.
    ARPAM (2006) Relazione annuale sulle acque superficiali interne. Anno 2006. Accessed 14 April 2013
  51. 51.
    Senesi GS, Dell’Aglio M, Gaudiuso R, De Giacomo A, Zaccone C, De Pascale O, Miano TM, Capitelli M (2009) Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ Res 109:413–420PubMedCrossRefGoogle Scholar
  52. 52.
    Brunialti G, Frati L (2007) Biomonitoring of nine elements by the lichen Xanthoria parietina in adriatic Italy: A retrospective study over a 7-year time span. Sci Total Environ 387:289–300PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sara Ruschioni
    • 1
  • Paola Riolo
    • 1
    Email author
  • Roxana Luisa Minuz
    • 1
  • Mariassunta Stefano
    • 2
  • Maddalena Cannella
    • 2
  • Claudio Porrini
    • 3
  • Nunzio Isidoro
    • 1
  1. 1.Dipartimento di Scienze Agrarie, Alimentari ed AmbientaliUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Centro Agrochimico RegionaleAzienda Servizi Settore Agroalimentare delle Marche, Regione MarcheJesiItaly
  3. 3.Dipartimento di Scienze AgrarieUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations