Skip to main content
Log in

Changes of Blue Mussels Mytilus edulis L. Lipid Composition Under Cadmium and Copper Toxic Effect

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The lipid and fatty acid composition of the blue mussels Mytilus edulis L. gills and digestive glands was evaluated after 24 and 72 h of cadmium (Cd) and copper (Cu) exposure. Mussels were exposed to different cadmium (10, 100, and 500 μg/L) and copper (5, 50, and 250 μg/L) concentrations. Similar stress response of predominant membrane phospholipids level as well as polyenoic and non-methylene interrupted (NMI) fatty acids content was observed in mussel gills under both cadmium and copper effects. Increased NMI fatty acids level after 24 h, the metal ions treatment suggests that these acids contribute to the protective response to the membrane oxidative stress caused by accumulation of the metals. The content of cholesterol, some minor membrane phospholipids, and storage lipids (triacylglycerols, TAG) in the mussels’ organs alter significantly under the cadmium and copper effect. A two-step response at the digestive glands TAG level depends on the duration of the cadmium and copper treatments (24 and 72 h) on the mussels. The results demonstrate that Cd and Cu impact has adverse effects on gills and digestive glands lipid and fatty acids composition. The type of observed effects varies with the nature and concentration of the metal ions and depends on the role of the metals in the mussels’ life activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity, and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  2. Geret F, Serafim A, Barreira L, Bebianno MJ (2002) Response of antioxidant systems to copper in the gills of the clam Ruditapes decussates. Mar Environ Res 54:413–417

    Article  PubMed  CAS  Google Scholar 

  3. Viarengo A (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. CRC Crit Rev Aquat Sci 1:295–317

    CAS  Google Scholar 

  4. Bakhmet IN, Kantserova NP, Lysenko LA, Nemova NN (2012) Effect of copper and cadmium ions on heart function and calpain activity in blue mussel Mytilus edulis. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 47(11):1528–1535

    CAS  Google Scholar 

  5. Zorita I, Apraiz I, Ortiz-Zarragoitia M, Orbea A, Cancio I, Soto M et al (2007) Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms. Environ Pollut 148:236–250

    Article  PubMed  CAS  Google Scholar 

  6. Vance DE, Vance JE (eds) (2002) Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed, Elsevier, 624.

  7. Bertoli E, Ambrosini A, Zolese G, Gabbianelli R, Fedeli D, Falcioni G (2001) Biomembrane perturbation induced by xenobiotics in model and living system. Cell Biol Mol Lett 6(2A):334–339

    Google Scholar 

  8. Los DA, Murata N (2004) Membrane fluidity and its role in the perception of environmental signals. Biochim Biophys Acta 1666(1–2):142–157

    PubMed  CAS  Google Scholar 

  9. Vlahogianni TH, Valavandis A (2007) Heavy-metal effects on lipid peroxidation and antioxidant defense enzymes in mussels Mytilus galloprovincialis. Chem Ecol 5:361–371

    Article  Google Scholar 

  10. Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B, Fiala-Medioni A (2004) Effect of cadmium, copper, and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 58:377–381

    Article  PubMed  CAS  Google Scholar 

  11. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    PubMed  CAS  Google Scholar 

  12. Koukouzika N, Dimitriadis VK (2008) Aspects of the usefulness of five marine pollution biomarkers, with emphasis on MN and lipid content. Mar Pollut Bull 56:941–949

    Article  PubMed  CAS  Google Scholar 

  13. Bakhmet IN, Zdorovenov RE (2008) The cardiac activity of two species of Bivalvia in long-term experiment in the field. In: 2nd marine mollusc physiology conference Physiomar 08 “Marine molluscs in a changing environment”: IFREMER Brest. France, 16

  14. Davies MS (1992) Heavy metals in sea water: effects on limpet pedal mucus production. Water Res 26:1691–1693

    Article  CAS  Google Scholar 

  15. Folch J, Lees M, Sloan-Stanley GH (1957) A simple method for the isolation and purification of total lipids animal tissue (for brain, liver, and muscle). J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  16. Sidorov VS, Lizenko EI, Bolgova OM, Nefedova ZA (1972) Fish lipids. 1. Analysis technique. Petrozavodsk, Karelian Branch of the USSR Academy of. Science 150–162

  17. Engelbrecht FM, Mari F, Anderson JT (1974) Cholesterol. Determination in serum: a rapid direction method. S Afr Med J 48(7):250–256

    PubMed  CAS  Google Scholar 

  18. Arduini A, Peschechera A, Dottori S, Sciarroni AF, Serafini F, Calvani M (1996) High-performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies. J Lipid Res 37:684–689

    PubMed  CAS  Google Scholar 

  19. Tsyganov EP (1971) Method of direct lipids methylation after TLC without elution with silica gel. Lab Delo 6:490–493 [in Russian]

    Google Scholar 

  20. Novak I (1978) Quantitative analysis by gas chromatography method. Mir 180 [in Russian]

  21. Hill T & Lewicki P (2007) STATISTICS: Methods and Applications. StatSoft, Tulsa, OK. http://www.statsoft.com/textbook/

  22. Da Ros L, Moschino V, Guerzoni S, Halldorsson HP (2007) Lysosomal responses and metallothionein induction in the blue mussel Mytilus edulis from the southwest coast of Iceland. Environ Int 33:362–369

    Article  PubMed  Google Scholar 

  23. Viarengo A, Moore MN, Pertica M, Mancinelli G, Zanicchi G, Pipe RK (1985) Detoxification of copper in the cells of the digestive gland of mussel: the role of lysosomes and thioneins. Sci Total Environ 44:135–145

    Article  CAS  Google Scholar 

  24. Bakhmet IN, Fokina NN, Nefedova ZA, Nemova NN (2009) Physiological–biochemical properties of blue mussel Mytilus edulis adaptation to oil contamination. Environ Monit Assess 155:581–591

    Article  PubMed  CAS  Google Scholar 

  25. Nechev J, Stefanov K, Popov S (2006) Effect of cobalt ions on lipid and sterol metabolism in the marine invertebrates Mytilus galloprovincialis and Actinia equine. Comp Biochem Physiol Part A 144:112–118

    Article  Google Scholar 

  26. Girardi JP, Pereira L, Bakovic M (2011) De novo synthesis of phospholipids is coupled with autophagosome formation. Med Hypotheses 77(6):1083–1087

    Article  PubMed  CAS  Google Scholar 

  27. Larade K, Storey KB (2002) A profile of the metabolic responses to anoxia in marine invertebrates. In: Cell and molecular responses to stress. Sensing, signaling and cell adaptation 3: 346

  28. Di Paolo G, de Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Article  PubMed  Google Scholar 

  29. Scheek S, Brown MS, Goldstein JL (1997) Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc Natl Acad Sci USA 94:11179–11183

    Article  PubMed  CAS  Google Scholar 

  30. Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121(11):4222–30

    Article  PubMed  CAS  Google Scholar 

  31. Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701

    Article  PubMed  CAS  Google Scholar 

  32. Chicanne G, Severin S, Boscheron C, Terrisse AD, Gratacap MP, Gaits-Iacovoni F, Tronchère H, Payrastre B (2012) A novel mass assay to quantify the bioactive lipid PtdIns3P in various biological samples. Biochem J 447(1):17–23

    Article  PubMed  CAS  Google Scholar 

  33. Pereira L, Girardi JP, Bakovic M (2012) Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy. Int J Cell Biol p10

  34. Fadok VA, Bratton DL, Henson PM (2001) Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Investig 108(7):957–962

    PubMed  CAS  Google Scholar 

  35. Alkanani T, Parrish CC, Thompson RJ, McKenzie CH (2007) Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland. J Exp Mar Biol Ecol 348:33–45

    Article  CAS  Google Scholar 

  36. Parrish CC (2009) Essential Fatty Acids in Aquatic Food Webs. Lipids in Aquatic Ecosystems. pp 309–326

  37. Choi JH, Chang HW, Rhee SJ (2002) Effect of green tea catechin on arachidonic acid cascade in chronic cadmium-poisoned rats. Asia Pac J Clin Nutr 11(4):292–7

    Article  PubMed  CAS  Google Scholar 

  38. Delaporte M, Soudant P, Lambert C, Moal J, Pouvreau S, Samain J-F (2006) Impact of food availability on energy storage and defense related hemocyte parameters of the Pacific oyster Crassostrea gigas during an experimental reproductive cycle. Aquaculture 254(1–4):571–582

    Article  Google Scholar 

  39. Sokolova IM, Evans S, Hughes FM (2004) Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. J Exp Biol 207:3369–3380

    Article  PubMed  CAS  Google Scholar 

  40. Meves H (2008) AA and ion channels: an update. Br J Pharmacol 155:4–16

    Article  PubMed  CAS  Google Scholar 

  41. Kantserova NP, Fokina NN, Lysenko LA, Nemova NN (2012) Correlation of the activity of Ca2+-dependent proteinases with the content of membrane lipid components in the organs of the blue mussel, Mytilus edulis, under heavy-metal accumulation. Russ J Bioorg Chemistry 38(1):71–76

    Article  CAS  Google Scholar 

  42. Chelomin VP, Bel’cheva NN, Zakhartsev MV (1998) Biochemical mechanisms of adaptation to cadmium and copper ions in the mussel Mytilus trossulus. Biology of the Sea 24(5):319–325, in Russian]

    CAS  Google Scholar 

  43. Zhukova NV (1991) The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in mollusks. Comp Biochem Physiol Part B Comp Biochem 100(4):801–804

    Article  Google Scholar 

  44. Barnathan G (2009) Non-methylene-interrupted fatty acids from marine invertebrates: occurrence, characterization, and biological properties. Biochimie 91(6):671–678

    Article  PubMed  CAS  Google Scholar 

  45. Nemova NN, Fokina NN, Nefedova ZA, Ruokolainen TR, Bakhmet IN (2013) Modifications of gill lipid composition in littoral and cultured blue mussels Mytilus edulis L. under the influence of ambient salinity. Polar Record, available on CJO2013. doi:10.1017/S0032247412000629

  46. Alvarez SM, Gómez NN, Scardapane L, Fornés MW, Giménez MS (2007) Effects of chronic exposure to cadmium on prostate lipids and morphology. Biometals 20(5):727–41

    Article  PubMed  CAS  Google Scholar 

  47. Kudo N, Waku K (1996) Cadmium suppresses delta 9 desaturase activity in rat hepatocytes. Toxicology 114(2):101–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to staff of the White Sea Biological Research Station “Kartesh” of the Zoological Institute RAS for the possibility to carry out research at the station.

This work was supported by RFBR grant N 12-04-32205, Russian President Program “Leading Scientific Schools” SS 1642.2012.4, the project of Ministry of Education and Science RF (contract N 01201274586), and programs of RAS “Biological resources” and “Biodiversity.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Fokina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokina, N.N., Ruokolainen, T.R., Nemova, N.N. et al. Changes of Blue Mussels Mytilus edulis L. Lipid Composition Under Cadmium and Copper Toxic Effect. Biol Trace Elem Res 154, 217–225 (2013). https://doi.org/10.1007/s12011-013-9727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9727-3

Keywords

Navigation