Biological Trace Element Research

, Volume 154, Issue 2, pp 178–184 | Cite as

Controlled Diet in Phenylketonuria and Hyperphenylalaninemia may Cause Serum Selenium Deficiency in Adult Patients: The Czech Experience

  • Dagmar ProcházkováEmail author
  • Jiří Jarkovský
  • Hana Vinohradská
  • Petra Konečná
  • Lucie Machačová
  • Zdeněk Doležel


Phenylketonuria is an inherited disorder of metabolism of the amino acid phenylalanine caused by a deficit of the enzyme phenylalanine hydroxylase. It is treated with a low-protein diet containing a low content of phenylalanine to prevent mental affection of the patient. Because of the restricted intake of high-biologic-value protein, patients with phenylketonuria may have lower than normal serum concentrations of pre-albumin, selenium, zinc and iron. The objective of the present study was to assess the compliance of our phenylketonuric (PKU) and hyperphenylalaninemic (HPA) patients; to determine the concentration of serum pre-albumin, selenium, zinc and iron to discover the potential correlation between the amount of proteins in food and their metabolic control. We studied 174 patients of which 113 were children (age 1–18), 60 with PKU and 53 with HPA and 61 were adults (age 18–42), 51 with PKU and 10 with HPA. We did not prove a statistically significant difference in the concentration of serum pre-albumin, zinc and iron among the respective groups. We proved statistically significant difference in serum selenium concentrations of adult PKU and HPA patients (p = 0.006; Mann–Whitney U test). These results suggest that controlled low-protein diet in phenylketonuria and hyperphenylalaninemia may cause serum selenium deficiency in adult patients.


Hyperphenylalaninemia Phenylketonuria Pre-albumin Selenium Zinc Iron 



Our thanks go to all the staff of the Department of Biochemistry, University Hospital Brno for elaboration of the biological material of our patients and to the firm Nutricia a.s. Czech Republic for their financial support with the collection and statistical processing of data.

Conflict of interest

The authors have no conflict of interest to disclose.


  1. 1.
    Crone MR, van Sprosen FJ, Oudshoorn K, Bekhof J, van Rijn G, Verkerk PH (2005) Behavioral factors related to metabolic control in patients with phenylketonuria. J Inherit Metab Dis 28:627–637PubMedCrossRefGoogle Scholar
  2. 2.
    Rocha JC, Almeida MF, Carmona C, Cardoso ML, Borges N, Soares I, Salcedo G, Lima MR, Azevedo I, van Spronsen FJ (2010) The use of prealbumin concentrations as a biomarker of nutritional status in treated phenylketonuric patients. Ann Nutr Metab 56:207–211. doi: 10.1159/000276641 PubMedCrossRefGoogle Scholar
  3. 3.
    Arnold GL, Vladutiu CJ, Kirby RS, Blakely EM, Deluca JM (2002) Protein insuffiency and linear growth restriction in phenylketonuria. J Pediatr 141:243–246PubMedCrossRefGoogle Scholar
  4. 4.
    Dobbelaere D, Michaud L, Debrabander S, Vanderbecken A, Gottrand F, Turck D, Farriaux JP (2003) Evaluation of nutritional status and pathophysiology of growth retardation in patients with phenylketonuria. J Inherit Metab Dis 26:1–11PubMedCrossRefGoogle Scholar
  5. 5.
    Lombeck I, Bremer HJ (1977) Primary and secondary disturbances in trace element metabolism connected with genetic metabolic disorders. Nutr Metab 21:49–64PubMedGoogle Scholar
  6. 6.
    Reilly C, Barrett JE, Patterson CM, Tinggi U, Latham SL, Martinam A (1990) Trace element nutrition status and dietary intake of children with phenylketonuria. Am J Clin Nutr 52:159–165PubMedGoogle Scholar
  7. 7.
    Van Bakel MM, Printzen G, Wermuth B, Wiesmann UN (2000) Antioxidant and thyroid status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981PubMedGoogle Scholar
  8. 8.
    Miranda da Cruz BD, Seidler H, Widhalm K (1993) Iron status and iron supplementation in children with classical phenylketonuria. J Am Coll Nutr 12:531–536PubMedGoogle Scholar
  9. 9.
    Bodley JL, Austin VJ, Hanley WB, Clarke JT, Zlotkin S (1993) Low iron status in infants and children with treated phenylketonuria: a population at risk for iron-deficiency anaemia and associated cognitive deficits. Eur J Pediatr 152:140–143PubMedCrossRefGoogle Scholar
  10. 10.
    Acosta PB, Yanicelli S, Singh RH, Elsa LJ II, Morici S, Steiner RD (2004) Iron status of children with phenylketonuria undergoing nutrition therapy assessed by transferrin receptors. Genet Med 6:96–101PubMedCrossRefGoogle Scholar
  11. 11.
    Acosta PB (1996) Nutrition studies in treated infants and children with phenylketonuria: vitamins, minerals, trace elements. Eur J Pediatr 155:S136–139PubMedCrossRefGoogle Scholar
  12. 12.
    Hvas AM, Nexo E, Nielsen JB (2006) Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis 29:47–53PubMedCrossRefGoogle Scholar
  13. 13.
    Robinson M, White FJ, Cleary MA, Wraith EJ, Lam WK, Walter JH (2000) Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr 136:545–547PubMedCrossRefGoogle Scholar
  14. 14.
    Vugteveen I, Hoeksma M, Monsen AL, Fokkema MR, Reijngoud DJ, van Rijn M, van Spronsen FJ (2011) Serum vitamin B12 concentrations within reference values do not exclude functional vitamin B12 deficiency in PKU patients of various ages. Mol Genet Metabol 102:13–17. doi: 10.1016/j.ymgme.2010.07.004 CrossRefGoogle Scholar
  15. 15.
    Koletzko B, Sauerwald T, Demmelmair H, Herzog M, von Schenck U, Bohles H, Wendel U, Seidel J (2007) Dietary long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria: a randomized controlled trial. J Inherit Metab Dis 30:326–332PubMedCrossRefGoogle Scholar
  16. 16.
    Vilaseca MA, Briones P, Ferrer I, Campistol J, Riverola A, Castillo P, Ramon F (1993) Controlled diet in phenylketonuria may cause serum carnitine deficiency. J Inherit Metab Dis 16:101–104PubMedCrossRefGoogle Scholar
  17. 17.
    Weigel C, Kiener C, Meier N, Schmidt P, Rauh M, Rascher W, Knerr I (2008) Carnitine status in early-treated children, adolescents and young adults with phenylketonuria on low phenylalanine diets. Ann Nutr Metab 53:91–95. doi: 10.1159/000165356 PubMedCrossRefGoogle Scholar
  18. 18.
    Zeman J, Bayer M, Stepan J (1999) Bone mineral density in patients with phenylketonuria. Acta Pediatr 88:1348–1351CrossRefGoogle Scholar
  19. 19.
    Modan-Moses D, Vered I, Schwarz G (2007) Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis 30:202–208PubMedCrossRefGoogle Scholar
  20. 20.
    Shils ME, Olson JA, Shike M, Ross AC (1999) Modern nutrition in health and disease, 9th edn. Williams and Wilkins, Baltimore, pp 1003–1056Google Scholar
  21. 21.
    Blau N, Hoffmann GF, Leonard J, Clarke JTR (2006) Physician’s guide to the treatment and follow-up of metabolic diseases, 1st edn. Springer, Berlin-Heidelberg, p 28CrossRefGoogle Scholar
  22. 22.
    Dastych M, Prochazkova D, Pokorny A, Zdražil L (2010) Copper and zinc in the serum, urine, and hair of patients with Wilson’s disease treated with penicillamine and zinc. Biol Trace Element Res 133:265–269. doi: 10.1007/s12011-009-8430-2 CrossRefGoogle Scholar
  23. 23.
    Gropper SS, Gropper DM, Acosta PB (1993) Plasma amino acid response to ingestion of l-amino acids and whole protein. J Pediatr Gastroenterol Nutr 16:143–150PubMedCrossRefGoogle Scholar
  24. 24.
    MacDonald A, Rocha JC, van Rijn M, Feillet F (2011) Nutrition in phenylketonuria. Mol Genet Metabol 104:S10–S18. doi: 10.1016/j.ymgme.2011.08.023 CrossRefGoogle Scholar
  25. 25.
    Barretto JR, Silva RL, Leite ME, Boa-Sorte N, Pimentel H, Purificacao AC, Carvalho G, Fontes MI, Amorim T (2008) Poor zinc and selenium status in phenylketonuric children and adolescents in Brazil. Nutr Res 28:208–211. doi: 10.1016/j.nutres.2007.12.009 PubMedCrossRefGoogle Scholar
  26. 26.
    Kvíčala J (2003) Increase of micronutrient selenium—utopia, fiction, prevision or a must. Part II. Intern Med Practice 6:295–300Google Scholar
  27. 27.
    Muntau AC, Streiter M, Kappler M, Roschinger W, Schmidt I, Rehnert A, Schramel P, Fischer AA (2002) Age-related reference values for serum selenium concentrations in infants and children. Clin Chem 48:555–560PubMedGoogle Scholar
  28. 28.
    Fisberg RM, DaSilva-Fernandes ME, Fisberg M, Schmidt BJ (1999) Plasma zinc, copper, and erythrocyte superoxide dismutase in children with phenylketonuria. Nutrition 15:449–452PubMedCrossRefGoogle Scholar
  29. 29.
    Acosta PB, Yanicelli S (1999) Plasma micronutrient concentrations in infants undergoing therapy for phenylketonuria. Biol Trace Elem Res 67:75–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dagmar Procházková
    • 1
    Email author
  • Jiří Jarkovský
    • 2
  • Hana Vinohradská
    • 3
  • Petra Konečná
    • 1
  • Lucie Machačová
    • 4
  • Zdeněk Doležel
    • 1
  1. 1.Department of PediatricsUniversity Hospital Brno, Medical Faculty of Masaryk University BrnoBrnoCzech Republic
  2. 2.Institute of Biostatistics and AnalysesMedical Faculty of Masaryk University BrnoBrnoCzech Republic
  3. 3.Department of BiochemistryUniversity Hospital BrnoBrnoCzech Republic
  4. 4.Department of Preventive MedicineMedical Faculty of Masaryk University BrnoBrnoCzech Republic

Personalised recommendations