Advertisement

Biological Trace Element Research

, Volume 154, Issue 2, pp 262–267 | Cite as

The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide

  • Ibrahim Guner
  • Duygu D. Uzun
  • Muhittin O. Yaman
  • Habibe Genc
  • Remisa Gelisgen
  • Gulcan G. Korkmaz
  • Metin Hallac
  • Nermin Yelmen
  • Gulderen Sahin
  • Yesari Karter
  • Gonul Simsek
Article

Abstract

Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis.

Keywords

Intermittent hypoxia Bone metabolism Bone mineral density Nitric oxide l-NAME Cytokines 

References

  1. 1.
    Neubauer JA (2001) Physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol 90:1593–1599PubMedGoogle Scholar
  2. 2.
    Dempsey JA, Hanson PG, Henderson KS (1984) Exercise induced arterial hypoxemia in healthy human subjects at sea level. J Physiol 355:161–175PubMedGoogle Scholar
  3. 3.
    Cottrell JJ (1998) Altitude exposures during aircraft flight: flying higher. Chest 93:81–84CrossRefGoogle Scholar
  4. 4.
    Hurtado A (1960) Some clinical aspects of life at high altitudes. Ann Intern Med 53:247–258PubMedCrossRefGoogle Scholar
  5. 5.
    McNicholas WT (1990) Sleep apnea. J Ir Coll Phys Surg 19:53–56Google Scholar
  6. 6.
    Zhang Y, Zhong N, Gia J, Zhou Z (2004) Effects of chronic intermittent hypoxia on the hemodynamics of systemic circulation in rats. Jpn J Physiol 54:171–174PubMedCrossRefGoogle Scholar
  7. 7.
    Anatskaya OV, Vinogradov AE (2007) Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 89:70–80PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X, Bean JC, Chen LH, Qin XH, Liu JH, Bai XC, Mei L, Gao TM (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30:12653–12663PubMedCrossRefGoogle Scholar
  9. 9.
    Serebrovskaya TV, Swanson RJ, Kolesnikova EE (2003) Intermittent hypoxia: mechanisms of action and some applications to bronchial asthma treatment. J Physiol Pharmacol 54:35–41PubMedGoogle Scholar
  10. 10.
    Shi M, Cui F, Liu AJ, Li J, Ma HJ, Cheng M, Yang J, Zhang Y (2011) Protection of chronic intermittent hypobaric hypoxia against collagen-induced arthritis in rat through increasing apoptosis. Acta Physiol Sin 63:115–123Google Scholar
  11. 11.
    Roels B, Bentley DJ, Coste O, Mercier J, Millet GP (2007) Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol 101:359–368PubMedCrossRefGoogle Scholar
  12. 12.
    Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196:2–8PubMedCrossRefGoogle Scholar
  13. 13.
    Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR (2006) Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 312:1693–1702PubMedCrossRefGoogle Scholar
  14. 14.
    Papaioannou A, Parkinson W, Ferko N, Probyn L, Ioannidis G, Jurriaans E, Cox G, Cook RJ, Kumbhare D, Adachi JD (2003) Prevalence of vertebral fracture among patients with chronic obstructive pulmonary disease in Canada. Osteoporos Int 14:913–917PubMedCrossRefGoogle Scholar
  15. 15.
    Miller RG, Segal JB, Ashar BH, Leung S, Ahmed S, Siddique S, Rice T, Lanzkron S (2006) High prevalence and correlates of low bone mineral density in young adults with sickle cell disease. Am J Hematol 81:236–241PubMedCrossRefGoogle Scholar
  16. 16.
    Mineo TC, Ambrogi V, Mineo D, Fabbri A, Fabbrini E, Massoud R (2005) Bone mineral density improvement after lung volume reduction surgery for severe emphysema. Chest 127:1960–1966PubMedCrossRefGoogle Scholar
  17. 17.
    Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X (2003) Systemic effects of chronic obstructive pulmonary disease. Eur Respir J 21:347–360PubMedCrossRefGoogle Scholar
  18. 18.
    Manukhina EB, Downey HF, Mallet RT (2006) Role of nitric oxide in cardiovascular. Exp Biol Med 231:343–365Google Scholar
  19. 19.
    Hukkanen M, Platts LAM, Lawes T, Girgis SI, Konttinen YT, Goodship AE, MacIntyre I, Polak JM (2003) Effect of nitric oxidedonor nitroglycerin on bone mineral density in a rat model of estrogen deficiency-induced osteopenia. Bone 32:142–149PubMedCrossRefGoogle Scholar
  20. 20.
    Simsek G, Uzun H, Aydin S, Karter Y, Benian A, Dariyerli N, Kaya S, Yigit G (2005) The role of nitricoxide on bone metabolism in ovariectomized rats following chronic ethanol intake. Life Sci 76:1965–1974PubMedCrossRefGoogle Scholar
  21. 21.
    Guner I, Yelmen N, Sahin G, Oruc T, Sipahi S, Yaman MO (2007) Respiratory alterations due to chronic long-term intermittent hypobaric hypoxia in rabbits; importance of peripheral chemoreceptors. Arch Med Res 38:739–745PubMedCrossRefGoogle Scholar
  22. 22.
    Yelmen N, Ozdemir S, Guner I, Toplan S, Sahin G, Yaman MO, Sipahi S (2011) The effects of chronic long-term intermittent hypobaric hypoxia on blood rheology parameters. Gen Physiol Biophys 30:389–395PubMedCrossRefGoogle Scholar
  23. 23.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1996) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138CrossRefGoogle Scholar
  24. 24.
    Pumarino H, Pumarino MG (1996) Cytokines, growth factors and metabolic bone disease. Rev Med Chil 124:248–257PubMedGoogle Scholar
  25. 25.
    Simsek G, Karter Y, Aydin S, Uzun H (2003) Osteoporotic cytokines and bone metabolism on rats with induced hyperthyroidism; changes as a result of reversal to euthyroidism. Chin J Physiol 46:181–186PubMedGoogle Scholar
  26. 26.
    Sozer V, Uzun H, Guner I, Aydin S, Yucel R, Karter Y, Simsek C, Kaya S, Yigit G, Simsek G (2006) Bone metabolism in ovariectomized rats with induced hyperthyroidism: the effect of estrogen replacement. Chin J Physiol 49:335–341PubMedGoogle Scholar
  27. 27.
    Gregory R, Mundy MD (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151CrossRefGoogle Scholar
  28. 28.
    McLean RR (2009) Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep 7:134–139PubMedCrossRefGoogle Scholar
  29. 29.
    Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60PubMedCrossRefGoogle Scholar
  30. 30.
    Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 15:457–475PubMedCrossRefGoogle Scholar
  31. 31.
    Bai P, Sun Y, Jin J, Hou J, Li R, Zhang Q, Wang Y (2011) Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir Res 12:157PubMedCrossRefGoogle Scholar
  32. 32.
    Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208:30–49PubMedCrossRefGoogle Scholar
  34. 34.
    Lam SY, Liu Y, Ng KM, Lau CF, Liong EC, Tipoe GL, Fung ML (2012) Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem Cell Biol 137:303–317PubMedCrossRefGoogle Scholar
  35. 35.
    Kubes P, McCafferty DM (2000) Nitric oxide and intestinal inflammation. Am J Med 109:150–158PubMedCrossRefGoogle Scholar
  36. 36.
    Damoulis PD, Hauschka PV (1994) Cytokines induce nitric oxide production in mouse osteoblasts. Biochem Biophys Res Commun 201:924–931PubMedCrossRefGoogle Scholar
  37. 37.
    Ralston SH, Ho LP, Helfrich MH, Grabowski PS, Johnston PW, Benjamin N (1995) Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res 10:1040–1049PubMedCrossRefGoogle Scholar
  38. 38.
    van't Hof RJ, Ralston SH (1997) Cytokine-induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity. J Bone Miner Res 12:1797–1804CrossRefGoogle Scholar
  39. 39.
    van't Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261CrossRefGoogle Scholar
  40. 40.
    Riancho JA, Zarrabeitia MT, Fernandez-Luna JL, Gonzalez-Macias J (1995) Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 107:87–92PubMedCrossRefGoogle Scholar
  41. 41.
    Garnero P, Vassy V, Bertholin A, Riou JP, Delmas PD (1994) Markers of bone turnover in hyperthyroidism and the effects of treatment. J Clin Endocrinol Metab 78:955–959PubMedCrossRefGoogle Scholar
  42. 42.
    Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J (2006) Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207:454–460PubMedCrossRefGoogle Scholar
  43. 43.
    Wang J, Shang F, Mei Q, Wang J, Zhang R, Wang S (2008) NO-donating genistein prodrug alleviates bone loss in ovariectomised rats. Swiss Med Wkly 138:602–607PubMedGoogle Scholar
  44. 44.
    Rahnert J, Fan X, Case N, Murphy TC, Grassi F, Sen B, Rubin J (2008) The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells. Bone 43:48–54PubMedCrossRefGoogle Scholar
  45. 45.
    Tomiyama H, Okazaki R, Inoue D, Ochiai H, Shiina K, Takata Y, Hashimoto H, Yamashina A (2008) Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos Int 19:1185–1192PubMedCrossRefGoogle Scholar
  46. 46.
    Litovka IH (2008) Alimentary and oxygen deprivation as the modulator of the bone tissue physiological remodelling rate in young rats (Ukrainian article, English abstract). Fiziol Zh 54:85–93PubMedGoogle Scholar
  47. 47.
    Ralston SH, Grabowski PS (1996) Mechanisms of cytokine induced bone resorption: role of nitric oxide, cyclic guanosine monophosphate, and prostaglandins. Bone 19:29–33PubMedCrossRefGoogle Scholar
  48. 48.
    Holliday LS, Dean AD, Lin RH, Greenwald JE, Gluck SL (1997) Low NO concentrations inhibit osteoclast formation in mouse marrow cultures by cGMP-dependent mechanism. Am J Physiol 272:F283–F291PubMedGoogle Scholar
  49. 49.
    Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates receptor activator of nuclear factor-kappa B ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145:751–759PubMedCrossRefGoogle Scholar
  50. 50.
    Zheng H, Yu X, Collin-Osdoby P, Osdoby P (2006) RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J Biol Chem 281:15809–15820PubMedCrossRefGoogle Scholar
  51. 51.
    Rosselli M, Imthurn B, Keller PJ, Jackson EK, Dubey RK (1995) Circulating nitric oxide (nitrite/nitrate) levels in postmenopausal women substituted with 17 beta-estradiol and norethisterone acetate. A two-year follow-up study. Hypertension 25:848–853PubMedCrossRefGoogle Scholar
  52. 52.
    Cicinelli E, Ignarro LJ, Lograno M, Matteo G, Falco N, Schonauer LM (1997) Acute effects of transdermal estradiol administration on plasma levels of nitric oxide in postmenopausal women. Fertil Steril 67:63–66PubMedCrossRefGoogle Scholar
  53. 53.
    Cicinelli E, Ignarro LJ, Schonauer LM, Matteo MG, Galantino P, Balzano G (1998) Effects of short-term transdermal estradiol administration on plasma levels of nitric oxide in postmenopausal women. Fertil Steril 69:58–61PubMedCrossRefGoogle Scholar
  54. 54.
    Stacey E, Korkia P, Hukkanen MV, Polak JM, Rutherford OM (1998) Decreased nitric oxide levels and bone turnover in amenorrheic athletes with spinal osteopenia. J Clin Endocrinol Metab 83:3056–3061PubMedCrossRefGoogle Scholar
  55. 55.
    Elshal MF, Bernawi AE, Al-Ghamdy MA, Jalal JA (2012) The association of bone mineral density and parathyroid hormone with serum magnesium in adult patients with sickle-cell anaemia. Arch Med Sci 8:270–276PubMedCrossRefGoogle Scholar
  56. 56.
    Simsek G, Andican G, Unal E, Hatemi H, Yigit G, Candan G (1997) Calcium, magnesium, and zinc status in experimental hyperthyroidism. Biol Trace Elem Res 57:131–137PubMedCrossRefGoogle Scholar
  57. 57.
    Simsek G, Uzun H, Karter Y, Aydin S, Yigit G (2003) Effects of osteoporotic cytokines in ovary-intact and ovariectomised rats with induced hyperthyroidism; is skeletal responsiveness to thyroid hormone altered in estrogen deficiency? Tohoku J Exp Med 201:81–89PubMedCrossRefGoogle Scholar
  58. 58.
    Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667PubMedCrossRefGoogle Scholar
  59. 59.
    Serebrovs'ka TV, Safronova OS, Hordiĭ SK (1999) Free radical processes under different conditions of body oxygen allowance (Ukrainian, English abstract). Fiziol Zh 45:92–103PubMedGoogle Scholar
  60. 60.
    Yang S, Ries WL, Key LL Jr (1998) Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int 63:346–350PubMedCrossRefGoogle Scholar
  61. 61.
    Jun JH, Lee SH, Kwak HB, Lee ZH, Seo SB, Woo KM, Ryoo HM, Kim GS, Baek JH (2008) N-Acetylcysteine stimulates osteoblastic differentiation of mouse calvarial cells. J Cell Biochem 103:1246–1255PubMedCrossRefGoogle Scholar
  62. 62.
    Del Rio R, Muñoz C, Arias P, Court FA, Moya EA, Iturriaga R (2011) Chronic intermittent hypoxia-induced vascular enlargement and VEGF upregulation in the rat carotid body is not prevented by antioxidant treatment. Am J Physiol Lung Cell Mol Physiol 301:L702–L711PubMedCrossRefGoogle Scholar
  63. 63.
    Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111:61–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ibrahim Guner
    • 1
  • Duygu D. Uzun
    • 2
  • Muhittin O. Yaman
    • 1
  • Habibe Genc
    • 3
  • Remisa Gelisgen
    • 3
  • Gulcan G. Korkmaz
    • 4
  • Metin Hallac
    • 5
  • Nermin Yelmen
    • 1
  • Gulderen Sahin
    • 1
  • Yesari Karter
    • 5
  • Gonul Simsek
    • 1
  1. 1.Department of Physiology, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  2. 2.Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
  3. 3.Department of Biochemistry, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  4. 4.School of HealthKırklareli UniversityKırklareliTurkey
  5. 5.Department of Internal Medicine, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations