Skip to main content
Log in

Effects of Cadmium and High Temperature on Some Parameters of Calcium Metabolism in the Killifish (Aphanius fasciatus)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aims to investigate the influence of high temperature on cadmium (Cd) toxicity in Aphanius fasciatus (Pisces: Cyprinodontidae). For this reason, Cd, mineral, and organic content in the vertebral column as well as the histological structure of gills and bone were compared in fishes exposed for 30 days to Cd (2 mg/L CdCl2) and/or high temperature (26 °C). Cd exposure caused a negative correlation between Cd and Ca concentrations (r = 0.98, p < 0.05), as well as a significant decrease in inorganic components (p < 0.05) and ash weight/dry weight ratio (p < 0.05) in the vertebral column. These changes were accompanied by an increased frequency of histological alterations in gills and bone. Concomitant treatment with Cd and high temperature increases Cd accumulation and Ca depletion in the skeletal tissue and increases the frequency and the severity of histological alterations. These results confirm that temperature increases Cd toxicity and needs to be taken into account for the accurate prediction and assessment of Cd-induced spinal deformities in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hallare AV, Schirling M, Luckenbach T, Kohler HR, Triebskorn R (2005) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30:7–17

    Article  CAS  Google Scholar 

  2. Sassi A, Annabi A, Kessabi K, Kerkeni A, Said K, Messaoudi I (2010) Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiol Biochem 36:403–409

    Article  PubMed  CAS  Google Scholar 

  3. Bengtsson A, Bengtsson BE, Lithner G (1985) Vertebral defects in fourhorn sculpin, Myoxocephalus quadricornis L, exposed to heavy metal pollution in the Gulf of Bothnia. J Fish Biol 33:517–529

    Article  Google Scholar 

  4. Antunes M, Lopes Da Cunha P (2002) Skeletal anomalies in Gobius niger (Gobiidae) from Sado Estuary, Portugal. Cybium 26:179–184

    Google Scholar 

  5. Hubbs C (1959) High incidence of vertebral deformities in two natural populations of fishes inhabiting warm springs. Ecology 40:154–155

    Article  Google Scholar 

  6. Messaoudi I, Kessabi K, Kacem A, Said K (2009) Incidence of spinal deformities in natural populations of Aphanius fasciatus Nardo, 1827 from the Gulf of Gabès, Tunisia. Afr J Ecol 47:360–366

    Article  Google Scholar 

  7. Messaoudi I, Deli T, Kessabi K, Barhoumi S, Kerkeni A, Said K (2009) Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès (Tunisia). Environ Monit Assess 156:551–560

    Article  PubMed  CAS  Google Scholar 

  8. Messaoudi I, Ben Chaoucha-Chekir R (2002) Fixation du cadmium par différents tissus et ses effets sur le poids corporel et la calcémie chez un rongeur Gerbillidé, Mériones Shawi shawi. Mammalia 66:553–562

    Article  Google Scholar 

  9. Smaoui-Damak W, Hamza-Chaffai A, Berthet B, Amiard JC (2003) Preliminary study of the clam Ruditapes decussates exposed in situ to metal contamination and originating from the gulf of Gabes, Tunisia. Bull Environ Contam Toxicol 71:961–970

    Article  PubMed  CAS  Google Scholar 

  10. Banni M, Dondero F, Jebali J, Guerbej H, Boussetta H, Viarengo A (2007) Assessment of heavy metal contamination using real time PCR analysis of mussel metallothionein mt10 and mt20 expression: a validation along the Tunisian coasts. Biomarkers 12:369–383

    Article  PubMed  CAS  Google Scholar 

  11. Kessabi K, Kerkeni A, Saïd K, Messaoudi I (2009) Involvement of Cd bioaccumulation in spinal deformities occurrence in natural populations of Mediterranean killifish. Biol Trace Elem Res 128:72–81

    Article  PubMed  CAS  Google Scholar 

  12. Leung KM, Taylor AC, Furness R (2000) Temperature dependant physiological responses of the dogwhelk Nucella lapillus to cadmium exposure. J Mar Biol Ass U K 80:647–660

    Article  CAS  Google Scholar 

  13. Rathore SR, Khangarot BS (2002) Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Müller to selected heavy metals. Ecotoxicol Environ Saf 53:27–36

    Article  PubMed  CAS  Google Scholar 

  14. O’Hara J (1973) The influence of temperature and salinity on the toxicity of cadmium to the fiddler crab, Uca pugilator. Fish Bull 71:149–153

    Google Scholar 

  15. Hutcheson MS (1974) The effects of temperature and salinity on cadmium uptake by the Blue Crab, Callinectes sapidus. Chesapeake Sc£ 15:237–241

    Article  CAS  Google Scholar 

  16. Vernberg WB, DeCoursey PJ, Kelly M, Johns DM (1977) Effects of sublethal concentrations of cadmium on adult Palaemonetes pugio under static and flow-through conditions. Bull Environ Contam Toxicol 17:16–24

    Article  PubMed  CAS  Google Scholar 

  17. Eisler R (1971) Cadmium poisoning in Fundulus heteroclitus (Pisces: Cyprinodontidae) and other organisms. J Fish Res Bd Can 28:1225–1234

    Article  CAS  Google Scholar 

  18. Larsson A, Bengtsson BE, Haux C (1981) Disturbed ion balance in flounder, Platichthys flesus L. exposed to sublethal levels of cadmium. Aquat Toxicol 1:19–35

    Article  CAS  Google Scholar 

  19. Takashima M, Nishino K, Itokawa Y (1978) Effect of cadmium and histological alteration in calcium-sufficient rats: an equalized feeding study. Toxicol Appl Pharmac 591–598

  20. Giles MA (1984) Electrolyte and water balance in plasma and urine of rainbow trout (salmo gairdneri) during chronic exposure to cadmium. Can J Fish Aquat Sci 41:1678–1685

    Article  CAS  Google Scholar 

  21. Verbost P, Vanrooij J, Flik G, Lock R, Wendelaar Bonga SE (1989) The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J Exp Biol 145:185–197

    CAS  Google Scholar 

  22. Muramoto S (1981) Vertebral column damage and decrease of calcium concentration in fish exposed experimentally to cadmium. Environ Pollut Ser 24:125–133

    Article  CAS  Google Scholar 

  23. Pratap H, Fu H, Lock R, Bonga S (1989) Effect of waterborne and dietary-cadmium on plasma ions of the teleost Oreochromis mossambicus in relation to water calcium level. Arch Environ Contam Toxicol 18:568–575

    Article  CAS  Google Scholar 

  24. Hwang P, Yang C (1997) Modulation of calcium uptake in cadmium-pretreated tilapia (Oreochromismossambicus) larvae. Fish Physiol Biochem 16:403–410

    Article  CAS  Google Scholar 

  25. Koyama J, Itazawa Y (1977) Effects of oral administration of cadmium on fish. Analytical results of the blood and bones. Nippon Suisan Gakkaishi 43:523–526

    Article  CAS  Google Scholar 

  26. Brzoska MM, Moniuszko-Jakoniuk J, Jurczuk M, Gałazyn-Sidorczuk M, Rogalska J (2001) The effect of zinc supply on cadmium-induced changes in the tibia of rats. Food Chem Toxicol 39:729–737

    Article  PubMed  CAS  Google Scholar 

  27. Cheng SH, Wai AWK, So CH, Wu RSS (2000) Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ Toxicol Chem 19:3024–3031

    Article  CAS  Google Scholar 

  28. Axiak V, Schembri JL (1982) Effects of temperature on the toxicity of mercury and cadmium to the littoral gastropod Monodonta turbinata. Mar Pollut Bull 13:383–386

    Article  CAS  Google Scholar 

  29. Barhoumi S, Messaoudi I, Gagné F, Kerkeni A (2012) Spatial and seasonal variability of some biomarkers in Salaria basilisca (Pisces: blennidae): implication for biomonitoring in Tunisian coasts. Ecol Indic 14:222–228

    Article  CAS  Google Scholar 

  30. Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Persp 71:47–58

    Article  CAS  Google Scholar 

  31. Jiraungkoorskul W, Sahaphong N, Kangwanrangsan N (2007) Toxicity of copper in butterfish (Poronotus triacanthus): tissues accumulation and ultrastructure changes. Environ Toxicol 22:92–100

    Article  PubMed  CAS  Google Scholar 

  32. Verbost PM, Flick G, Lock RAC, Wendelaar Bonga SE (1987) Cadmium inhibition of Ca2+ uptake in rainbow trout gills. Am J Physiol 253:216–221

    Google Scholar 

  33. Farag AM, Boese CJ, Woodward DR, Bergman HL (1994) Physiological changes and tissues metal accumulation in rainbow trout exposed to food borne and waterborne metals. Environ Toxicol Chem 13:2021–2029

    Article  CAS  Google Scholar 

  34. Wick-lund-Glynn A, Norrgren L, Mussener A (1994) Differences in uptake of inorganic mercury and cadmium in the gills of the zebrafish, Brachydanio rerio. Aquat Toxicol 30:13–26

    Article  CAS  Google Scholar 

  35. Reid SD, McDonald DG (1991) Metal binding activity of the gills of rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 48:1061–1068

    Article  CAS  Google Scholar 

  36. Norrgren-Karlsson L, Runn P, Haux C, Forlin L (1985) Cadmium induced changes in gill morphology of zebrafish, Brachydynio rerio (Hamilton-Buchanan), and rainbow trout, Salmo gairdneri. J Fish Biol 27:81–95

    Article  Google Scholar 

  37. Paratap HB, Wendelaar Bonga SE (1993) Effect of ambient and dietary cadmium on pavement cells, chloride cells and Na+/K+-ATPase activity in the gills of the freshwater teleost Oreochromis mossambicus at normal and high calcium levels in the ambient water. Aquat Toxicol 26:133–150

    Article  Google Scholar 

  38. Mallat J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    Article  Google Scholar 

  39. Thophon S, Kruatrachue M, Upatham ES (2003) Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 121:307–320

    Article  PubMed  CAS  Google Scholar 

  40. Gill TS, Pant JC, Pant J (1988) Gill, liver and kidney lesions associated with experimental exposures to carbaryl and dimethoate in the fish Puntius conchonius. Ham Bull Environ Contam Toxicol 41:71–78

    Article  CAS  Google Scholar 

  41. Richmonds C, Dutta HM (1989) Histopathological changes induced by malathion in the gills of Bluegill Lepomis macrochirus. Bull Environ Contam Toxicol 43:123–130

    Article  PubMed  CAS  Google Scholar 

  42. Alazemi BM, Lewis JW, Andrews EB (1996) Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ Technol 17:225–238

    Article  CAS  Google Scholar 

  43. Annabi A, Messaoudi I, Kerkeni A, Said K (2011) Cadmium accumulation and histological lesion in mosquitofish (Gambusia affinis) tissues following acute and chronic exposure. Environ Res 5:745–756

    CAS  Google Scholar 

  44. Cengiz EI, Unlu E (2005) Sublethal effects of commercial deltamerthrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: a microscopic study. Environ Toxicol Pharm 21:246–253

    Article  Google Scholar 

  45. Mishra AK, Mohanty B (2009) Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of teleost, Channa punctatus (Bloch). Sci Total Environ 407:5031–5038

    Article  PubMed  CAS  Google Scholar 

  46. Wangsongsak A, Utarnpongsa S, Kruatachue M, Ponglikitmongkol M, Pokethitiyook P, Sumranwanisch T (2007) Alterations of organ histopathology and metallothinein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure. J Environ Sci 19:1342–1348

    Article  Google Scholar 

  47. Salazar-Lugo R, Mata C, Oliveros A, Rojas LM, Lemus M, Rojas-Villarroel E (2011) Histopathological changes in gill, liver and kidney of neotropical fish Colossoma macropomum exposed to paraquat at different temperatures. Environ Toxicol Pharm 31:490–495

    Article  CAS  Google Scholar 

  48. Couch JA, Winstead JT, Hansen DJ, Goodman LR (1979) Vertebral dysplasia in young fish exposed to the herbicide trifluralin. J Fish Dis 2:35–42

    Article  Google Scholar 

  49. Helland S, Denstadli V, Witten PE, Hjelde K, Storebakken T, Skerde A, Asgard T, Baeverfjord G (2006) Hyper dense vertebrae and mineral content in Atlantic salmon (Salmo salar L.) fed diets with graded levels of phytic acid. Aquaculture 261:603–614

    Article  CAS  Google Scholar 

  50. Laura GM, Eckh WP, Sveinung F, Ann H, Bjarte S, Vibeke V, Alex O (2006) Impact of high water carbon dioxide levels on Atlantic salmon (Salmo salar L.): effects on fish performance, vertebrae compression and structure. Aquaculture 261:80–88

    Article  Google Scholar 

  51. Ørnsrud R, Gil L, Waagbo R (2004) Teratogenicity of elevated egg incubation temperature and egg vitamin A status in Atlantic salmon, Salmo salar L. Fish Dis 27:213–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imed Messaoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughammoura, S., Kessabi, K., Chouchene, L. et al. Effects of Cadmium and High Temperature on Some Parameters of Calcium Metabolism in the Killifish (Aphanius fasciatus) . Biol Trace Elem Res 154, 73–80 (2013). https://doi.org/10.1007/s12011-013-9714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9714-8

Keywords

Navigation