Skip to main content
Log in

Iodine Excess Induces Hepatic Steatosis Through Disturbance of Thyroid Hormone Metabolism Involving Oxidative Stress in BaLB/c Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine excess is emerging as a new focus. A better understanding of its hazardous effects on the liver will be of great benefit to health. The aim of this study is to illustrate the effects of iodine excess on hepatic lipid homeostasis and explore its possible mechanisms. One hundred twenty BaLB/c mice were given iodine at different levels (0, 0.3, 0.6, 1.2, 2.4, and 4.8 mg I/L) in drinking water for 1 or 3 months. Lipid parameters and serum thyroid hormones were measured. Hepatic type 1 deiodinase activity and oxidative stress parameters were evaluated. The mRNA expression of sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) was detected by real-time polymerase chain reaction. Dose-dependent increase of hepatic triglyceride content was detected (r = 0.680, P < 0.01) in iodine-loaded groups. Evident hepatic steatosis was observed in 2.4 and 4.8 mg I/L iodine-loaded groups. The activities of antioxidant enzymes (glutathione peroxidase and superoxide dismutase) were decreased, and the malondialdehyde level was increased by excessive iodine in both serum and liver in a dose-dependent manner, accompanying the decrease of hepatic D1 activity. That resulted in the increase of serum total thyroxine and the decrease of serum total triiodothyronine in iodine-loaded groups. The mRNA expression of SREBP-1c and FAS was increased in iodine-loaded groups in response to the change of serum triiodothyronine. Present findings demonstrated that iodine excess could dose dependently induce hepatic steatosis. Furthermore, our data suggested that the disturbance of thyroid hormone metabolism involving oxidative stress may play a critical role in iodine excess-induced hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Delange F, Lecomte P (2000) Iodine supplementation: benefits outweigh risks. Drug Saf 22:89–95

    Article  PubMed  CAS  Google Scholar 

  2. Guo H, Yang X et al (2006) Effect of selenium on thyroid hormone metabolism in filial cerebrum of mice with excessive iodine exposure. Biol Trace Elem Res 113:281–295

    Article  PubMed  CAS  Google Scholar 

  3. Rose NR, Bonita R et al (2002) Iodine: an environmental trigger of thyroiditis. Autoimmun Rev 1:97–103

    Article  PubMed  CAS  Google Scholar 

  4. Roti E, Uberti ED (2001) Iodine excess and hyperthyroidism. Thyroid 11:493–500

    Article  PubMed  CAS  Google Scholar 

  5. Yang XF, Xu J et al (2006) Developmental toxic effects of chronic exposure to high doses of iodine in the mouse. Reprod Toxicol 22:725–730

    Article  PubMed  CAS  Google Scholar 

  6. Kroupova VKP, Kaufmann S et al (1998) Metabolic effects of giving additional iodine to laying hens. Vet Med (Praha) 7:207–212

    Google Scholar 

  7. Perry GC, Lewis PD et al (1989) Iodine supplementation from two sources and its effect on egg output. Br Poult Sci 30:973–974

    Google Scholar 

  8. Perry GC, Lewis PD et al (1990) Responses of the laying hen to dietary iodine supplementation. Proceedings of the 8th European poultry conference. Barcelona: Spanish Branch. World's Poult Sci Assoc 1:384–387

    Google Scholar 

  9. Bolt MW, Card JW et al (2001) Disruption of mitochondrial function and cellular ATP levels by amiodarone and N-desethylamiodarone in initiation of amiodarone-induced pulmonary cytotoxicity. J Pharmacol Exp Ther 298:1280–1289

    PubMed  CAS  Google Scholar 

  10. Card JW, Lalonde BR et al (1998) Amiodarone-induced disruption of hamster lung and liver mitochondrial function: lack of association with thiobarbituric acid-reactive substance production. Toxicol Lett 98:41–50

    Article  PubMed  CAS  Google Scholar 

  11. Fromenty B, Fisch C et al (1990) Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice. J Pharmacol Exp Ther 255:1371–1376

    PubMed  CAS  Google Scholar 

  12. Koenig RJ (2005) Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid 15:835–840

    Article  PubMed  CAS  Google Scholar 

  13. Maiti PK, Kar A (1997) Dimethoate inhibits extrathyroidal 5′-monodeiodination of thyroxine to 3,3′,5-triiodothyronine in mice: the possible involvement of the lipid peroxidative process. Toxicol Lett 14:1–6

    Article  Google Scholar 

  14. Brzezińska-Slebodzińska E (2001) Fever induced oxidative stress: the effect on thyroid status and the 5′-monodeiodinase activity, protective role of selenium and vitamin E. J Physiol Pharmacol 52:275–284

    PubMed  Google Scholar 

  15. Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K et al (1999) Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274:35832–35839

    Article  PubMed  CAS  Google Scholar 

  16. Ahmed MH, Byrne CD (2007) Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov Today 12:740–747

    Article  PubMed  CAS  Google Scholar 

  17. Viguerie N, Langin D (2003) Effect of thyroid hormone on gene expression. Curr Opin Clin Nutr Metab Care 6:377–381

    PubMed  CAS  Google Scholar 

  18. Viguerie N, Millet L et al (2002) Regulation of human adipocyte gene expression by thyroid hormone. J Clin Endocrinol Metab 87:630–634

    Article  PubMed  CAS  Google Scholar 

  19. Kawai K, Sasaki S et al (2004) Unliganded thyroid hormone receptor-1 represses liver X receptor/oxysterol-dependent transactivation. Endocrinology 145:5515–5524

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto K, Yamada M et al (2006) Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 147:4292–4302

    Article  PubMed  CAS  Google Scholar 

  21. Chinese Nutrition Society (2001) Chinese dietary reference intakes, DRIs. Acta Nntrimenta Sinica 23:193-196

    Google Scholar 

  22. Gao Q, Zhang S, Xu C et al (2002) The dose–response relationship study between the quantitative morphological stereology on thyroid and different iodine doses in mice. Zhonghua Yu Fang Yi Xue Za Zhi 36:38–40

    PubMed  CAS  Google Scholar 

  23. Gao B, Yin G (1997) Effects of high-dose iodine on brain development in mice. Zhonghua Yu Fang Yi Xue Za Zhi 31:134–136

    PubMed  CAS  Google Scholar 

  24. Zhao LN, Xu J, Peng XL et al (2010) Dose and time-dependent hypercholesterolemic effects of iodine excess via TRb1-mediated down regulation of hepatic LDLr gene expression. Eur J Nutr 49:257–265

    Article  PubMed  CAS  Google Scholar 

  25. Fischer PW, L'Abbe MR et al (1986) Colorimetric determination of total iodine in foods by iodide-catalyzed reduction of Ce+4. J Assoc Off Anal Chem 69:687–689

    PubMed  CAS  Google Scholar 

  26. Folch J, Lees M et al (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  27. Benzie IF, Strain JJ (1974) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  Google Scholar 

  28. Hafeman DG, Sunde RA et al (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587

    PubMed  CAS  Google Scholar 

  29. Winterbourn CC, Hawkins RE et al (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337–341

    PubMed  CAS  Google Scholar 

  30. Placer ZACL, Johnson BC et al (1966) Estimation of product of lipid peroxidation, malondialdehyde in biochemical. system. Anal Biochem 16:359–367

    Article  PubMed  CAS  Google Scholar 

  31. Koopdonk-Kool JM, de Vijlder JJ et al (1996) Type II and type III deiodinase activity in human placenta as a function of gestational age. J Clin Endocrinol Metab 81:2154–2158

    Article  PubMed  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C (T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  34. Santangeli P, Di Biase L et al (2012) Examining the safety of amiodarone. Expert Opin Drug Saf 11:191–214

    Article  PubMed  CAS  Google Scholar 

  35. Padmanabhan H (2010) Amiodarone and thyroid dysfunction. South Med J 103:922–930

    Article  PubMed  Google Scholar 

  36. Song M, Kim YJ et al (2011) Phospholipidosis induced by PPARγ signaling in human bronchial epithelial (BEAS-2B) cells exposed to amiodarone. Toxicol Sci 120:98–108

    Article  PubMed  CAS  Google Scholar 

  37. Hudig F, Bakker O et al (1998) Amiodarone decreases gene expression of low-density lipoprotein receptor at both the mRNA and the protein level. Metabolism 47:1052–1057

    Article  PubMed  CAS  Google Scholar 

  38. Rizzo LF et al (2012) Amiodarone and thyroid dysfunction. Article Span 72:63–74

    CAS  Google Scholar 

  39. Davis RA (1999) Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta 1440:1–31

    Article  PubMed  CAS  Google Scholar 

  40. Joanta AE, Filip A, Daicoviciu D (2006) Iodide excess exerts oxidative stress in some target tissues of the thyroid hormones. Acta Physiol Hung 93:347–359

    Article  PubMed  CAS  Google Scholar 

  41. Vitale M, Di Matola T et al (2000) Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinology 141:598–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, no. 81102127 and 81172668. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Qu, W., Zhao, LN. et al. Iodine Excess Induces Hepatic Steatosis Through Disturbance of Thyroid Hormone Metabolism Involving Oxidative Stress in BaLB/c Mice. Biol Trace Elem Res 154, 103–110 (2013). https://doi.org/10.1007/s12011-013-9705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9705-9

Keywords

Navigation