Skip to main content
Log in

Antibacterial Evaluation of Novel Organoarsenic Compounds by the Microcalorimetric Method

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Antibacterial activities of novel organoarsenic compounds As(III)-containing Schiff bases on Escherichia coli (CCTCCAB91112) were investigated by microcalorimetry in this study. The experimental result showed that the arsenic(III)-containing Schiff bases at micromolar concentration exhibit strong inhibition on the E. coli. Specifically, the growth rate constant k decreased, and the generation time t G and the inhibitory ratio I (percentage) increased with the increased dose of the arsenicals as inhibitors. All of the arsenicals display the feature of considerable lag phase inhibition on the cell growth. The compound 4-(4-bromobenzaliminyl)phenylarsenoxide makes the lag phase of E. coli cell growth cycles to reach 650 min at 5 μmol/L. The compounds with donating electron groups at aromatic ring B have lower IC50 to present higher antibacterial activity. The compound 4-(4-hydroxyl-3-methoxylbenzaliminyl)phenylarsenoxide has the lowest IC50 (1.82 μmol/L) to show the strongest antibacterial activity among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  PubMed  CAS  Google Scholar 

  2. Binder S, Levitt AM, Sacks JJ, Hughes JM (1999) Emerging infectious diseases: public health issues for the 21st century. Science 284:1311–1313

    Article  PubMed  CAS  Google Scholar 

  3. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Article  PubMed  CAS  Google Scholar 

  4. Drosten C, Günther S, Preiser W, van der Werf S et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976

    Article  PubMed  CAS  Google Scholar 

  5. WHO (2011) Enterohaemorrhagic Escherichia coli (EHEC) http://www.who.int/mediacentre/factsheets/fs125/en/. Accessed Dec 2011

  6. Bentley R, Chasteen TG (2002) Arsenic curiosa and humanity. Chem Educator 7(2):51–60

    Article  CAS  Google Scholar 

  7. Gensini GF, Conti AA, Lippi D (2007) The contributions of Paul Ehrlich to infectious disease. J Infect 54(3):221–224

    Article  PubMed  Google Scholar 

  8. Fairlamb AH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19(11):488–494

    Article  PubMed  CAS  Google Scholar 

  9. Zhu J, Chen Z, Valerie LB, Hugues T (2002) How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer 2(9):705–714

    Article  PubMed  CAS  Google Scholar 

  10. Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33:542–564

    Article  PubMed  CAS  Google Scholar 

  11. Hu J, Fang J, Dong Y, Chen SJ, Chen Z (2005) Arsenic in cancer therapy. Anticancer Drugs 16:119–127

    Article  PubMed  CAS  Google Scholar 

  12. Shao W, Fanelli M, Ferrara FF et al (1998) Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J Natl Cancer Inst 90:124–133

    Article  PubMed  CAS  Google Scholar 

  13. Oda M, Sakitani K, Kaibori M, Inoue T, Kamiyama Y, Okumura T (2000) Vicinal dithiol-binding agent, phenylarsine oxide, inhibits inducible nitric-oxide synthase gene expression at a step of nuclear factor-kappaB DNA binding in hepatocytes. J Biol Chem 275(6):4369–4373

    Article  PubMed  CAS  Google Scholar 

  14. Dilda PJ, Perrone GG, Philp A et al (2008) Insight into the selectivity of arsenic trioxide for acute promyelocytic leukemia cells by characterizing Saccharomyces cerevisiae deletion strains that are sensitive or resistant to the metalloid. Int J Biochem Cell Biol 40(5):1016–1029

    Article  PubMed  CAS  Google Scholar 

  15. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Rev 26(3):311–325

    Article  CAS  Google Scholar 

  16. Chowdhury UK, Zakharyan RA, Hernandez A, Avram MD, Kopplin MJ, Aposhian HV (2006) Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216(3):446–457

    Article  PubMed  CAS  Google Scholar 

  17. Yoshito K, Daigo S (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Ann Rev Pharmacol Toxicol 47:243–262

    Article  Google Scholar 

  18. Park D, Dilda PJ (2010) Mitochondria as targets in angiogenesis inhibition. Mol Aspects Med 31(1):113–131

    Article  PubMed  CAS  Google Scholar 

  19. Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  20. Cleiton M, Daniel L et al (2011) Schiff bases: a short review of their antimicrobial activities. J Adv Res 2(1):1–8

    Article  Google Scholar 

  21. Przybylski P, Huczynski A, Pyta K, Brzezinski B, Bartl F (2009) Biological properties of schiff bases and azo derivatives of phenols. Curr Org Chem 13(2):124–148

    Article  CAS  Google Scholar 

  22. Buckton G (1995) Applications of isothermal microcalorimetry in the pharmaceutical sciences. Thermochim Acta 248(2):117–129

    Article  CAS  Google Scholar 

  23. Zhang LX, Liu Y, Cia LH, Hu YJ, Yin J, Hu PZ (2006) Inhibitory study of some novel Schiff base derivatives on Staphylococcus aureus by microcalorimetry. Thermochim Acta 440:51–56

    Article  CAS  Google Scholar 

  24. Xu XJ, Xue Z, Qi ZD, Hou AX, Li CH, Liu Y (2008) Antibacterial activities of manganese(II) ebselen–porphyrin conjugate and its free components on Staphylococcus aureus investigated by microcalorimetry. Thermochim Acta 467:33–38

    Article  Google Scholar 

  25. Li X, Zhang T, Min X, Liu P (2010) Toxicity of aromatic compounds to Tetrahymena estimated by microcalorimetry and QSAR. Aquatic Toxicol 98:322–327

    Article  CAS  Google Scholar 

  26. Marison I, Liu JS, Ampuero S, Stockar U, Schenker B (1998) Biological reaction calorimetry: development of high sensitivity bio-calorimeters. Thermochim Acta 309:157–173

    Article  CAS  Google Scholar 

  27. Beezer AE, Mitchell JC, Colegate RM, Scally DJ, Twyman LJ, Willson RJ (1995) Microcalorimetry in the screening of discovery compounds and in the investigation of novel drug delivery systems. Thermochim Acta 250:277–283

    Article  CAS  Google Scholar 

  28. Zheng D, Liu Y, Zhang Y, Chen XJ, Shen YF (2006) Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF5 during growth. Environ Toxicol Pharmacol 22:121–127

    Article  PubMed  Google Scholar 

  29. Li X, Liu Y, Wu J, Qu SS (2001) The effect of the selenomorpholine derivatives on the growth of Staphylococcus aureus studied by microcalorimetry. Thermochim Acta 375:109–113

    Article  CAS  Google Scholar 

  30. Rezanka T, Sigler K (2008) Biologically active compounds of semi-metals. Phytochem 69:585–606

    Article  CAS  Google Scholar 

  31. Adamson SR, Robinson JA, Stevenson KJ (1984) Inhibition of pyruvate dehydrogenase ultienzyme complex from Escherichia coli with a radiolabeled bifunctional arsenoxide: evidence for essential histidine residue at the active site of lipoamide dehydrogenase. Biochem 23(6):1269–1274

    Article  CAS  Google Scholar 

  32. Stevenson KJ, Hale G, Perham RN (1978) Inhibition of pyruvate dehydrogenase multienzyme complex from Escherichia coli with mono- and bifunctional arsenoxides. Biochemistry 17(11):2189–2192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (grant nos. 21225313 and 20921062) and Hubei Provincial Department of Education (D20092603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XY., Hu, XL., Xia, CF. et al. Antibacterial Evaluation of Novel Organoarsenic Compounds by the Microcalorimetric Method. Biol Trace Elem Res 153, 382–389 (2013). https://doi.org/10.1007/s12011-013-9660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9660-5

Keywords