Skip to main content

Advertisement

Log in

Protective Effects of Mangiferin in Subchronic Developmental Lead-Exposed Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead is a ubiquitous environmental and industrial pollutant. Exposure to excessive amounts of lead is especially harmful to the central nervous systems of infants and young children, and oxidative stress has been reported as a major mechanism of lead-induced toxicity. To evaluate the ameliorative potential of antioxidant mangiferin (MGN) on lead-induced toxicity, Morris water maze test, determination of blood and bone lead concentration, determination of antioxidant status in plasma, as well as observation of ultrastructural changes in the hippocampus were carried out. In the present study, under a transmission electron microscope, ameliorated morphological damages in the hippocampus were observed in MGN-treated groups. Blood and bone lead concentration in MGN-treated groups lowered to some extent (p < 0.05, p < 0.01). The activities of antioxidant enzymes, glutathione (GSH) content, and the GSH/oxidized glutathione ratio in MGN-treated groups were increased, respectively. Further studies are needed to establish whether the observed differences were a direct cause of mangiferin on lead-induced toxicity or not. This study might provide clues for the treatment of lead-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B-Pb:

Blood lead

CAT:

Catalase

DMSA:

2,3-Dimercaptosuccinic acid

DTNB:

5,5-Dithiobis-2-nitrobenzoic acid

GR:

Glutathione reductase

GSH:

Glutathione

GSH-PX:

Glutathione peroxidase

GSSG:

Oxidized glutathione

GST:

Glutathione-S-transferase

ICP-MS:

Inductively coupled plasma mass spectrometry

LPO:

Lipid peroxides

MDA:

Malondialdehyde

MGN:

Mangiferin

NBT:

Nitroblue tetrazolium

OH:

Hydroxyl radicals

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TEM:

Transmission electron microscopy

References

  1. Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29:927–945

    Article  PubMed  CAS  Google Scholar 

  2. Schaumberg DA et al (2004) Accumulated lead exposure and risk of age-related cataract in men. JAMA 292(22):2750–4

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organization (2010) Childhood lead poisoning. WHO Document Production Services, Geneva

    Google Scholar 

  4. Medley SS (1982) Childhood lead toxicity: a paradox of modern technology. Ann Am Acad Pol Soc Sci 461:63–73

    Article  PubMed  Google Scholar 

  5. Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  PubMed  CAS  Google Scholar 

  6. Brent JA (2006) Review of: “Medical Toxicology”. Clin Toxicol 44:355–355

    Article  Google Scholar 

  7. Bellinger DC (2004) Lead. Pediatrics 113:1016–1022

    PubMed  Google Scholar 

  8. Bellinger DC, Bellinger AM (2006) Childhood lead poisoning: the torturous path from science to policy. J Clin Invest 116(4):853–7

    Article  PubMed  CAS  Google Scholar 

  9. Needleman HL, Gunnoe C, Leviton A et al (1979) Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N Engl J Med 300:689–95

    Article  PubMed  CAS  Google Scholar 

  10. Fulton M, Raab G, Thomson G, Laxen D, Hunter R, Hepburn W (1987) Influence of blood lead on the ability and attainment of children in Edinburgh. Lancet 1:1221–6

    Article  PubMed  CAS  Google Scholar 

  11. Jakubowski M (2011) Low-level environmental lead exposure and intellectual impairment in children—the current concepts of risk assessment. Int J Occup Med Environ Health 24:1–7

    Article  PubMed  Google Scholar 

  12. Hu H, Milder F, Burger D (1989) X-ray fluorescence: issues surrounding the application of a new tool for measuring lead burden. Environ Res 49:295–317

    Article  PubMed  CAS  Google Scholar 

  13. Hernberg S (2000) Lead poisoning in a historical perspective. Am J Ind Med 38(3):244–54

    Article  PubMed  CAS  Google Scholar 

  14. ATSDR (Agency for Toxic Substances and Disease Registry) (2007) Toxicological profile for lead. Department of Health and Human Services, Washington, DC

  15. Ahamed M, Siddiqui MK (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383:57–64

    Article  PubMed  CAS  Google Scholar 

  16. Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206

    Article  PubMed  Google Scholar 

  17. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    Article  PubMed  CAS  Google Scholar 

  18. Das S, Nageshwar RB, Satish RB (2011) Mangiferin attenuates methylmercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chem Biol Interact 193(2):129–40

    Article  PubMed  CAS  Google Scholar 

  19. Martin M, Qian H (2008) Major mango polyphenols and their potential significance to human health. Compr Rev Food Sci Food Saf 7(4):309–319

    Article  Google Scholar 

  20. Vyas A, Syeda K, Ahmad A, Padhye S, Sarkar FH (2012) Perspectives on medicinal properties of mangiferin. Mini Reviews in Medicinal Chemistry 12(5):412–425

    Article  PubMed  CAS  Google Scholar 

  21. Wauthoz N, Balde A, Balde ES, Van Damme M, Duez P (2007) Ethnopharmacology of Mangifera indica L. bark and pharmacological studies of its main C-glucosylxanthone, mangiferin. Int J Biomed Pharm Sci 1:112–119

    Google Scholar 

  22. Sato T et al (1992) Mechanism of antioxidant action of pueraria glycoside (PG)-1 (an isoflavonoid) and mangiferin (a xanthonoid). Chem Pharm Bull (Tokyo) 40(3):721–4

    Article  CAS  Google Scholar 

  23. Sanchez GM et al (2000) Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 42(6):565–73

    Article  PubMed  CAS  Google Scholar 

  24. Bravo A, Anacona JR (2001) Metal complexes of the flavonoid quercetin: antibacterial properties. Trans Met Chem 26:20–23

    Article  CAS  Google Scholar 

  25. Ibarretxe G, Sanchez-Gomez MV, Campos-Esparza MR, Alberdi E, Matute C (2006) Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia 53:201–211

    Article  PubMed  Google Scholar 

  26. Lemus-Molina Y et al (2009) Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. Neurotoxicology 30:1053–8

    Article  PubMed  CAS  Google Scholar 

  27. Gottlieb M, Leal-Campanario R, Campos Esparza MR, Sanchez-Gomez MV, Alverdi E, Arranz A, Delgado García JM, Gruart A, Matute C (2006) Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 23:374–386

    Article  PubMed  CAS  Google Scholar 

  28. Agarwala S et al (2012) Mangiferin, a dietary xanthone protects against mercury-induced toxicity in HepG2 cells. Environ Toxicol 27:117–27

    Article  PubMed  CAS  Google Scholar 

  29. Kaivalya M, Nageshwar RB, Satish RB (2011) Mangiferin: a xanthone attenuates mercury chloride induced cytotoxicity and genotoxicity in HepG2 cells. J Biochem Mol Toxicol 25(2):108–16

    Article  PubMed  CAS  Google Scholar 

  30. Satish RB, Sreedevi MV, Nageshwar RB (2009) Cytoprotective and antigenotoxic potential of mangiferin, a glucosylxanthone against cadmium chloride induced toxicity in HepG2 cells. Food Chem Toxicol 47(3):592–600

    Article  Google Scholar 

  31. Viswanadh EK, Rao BN, Rao BS (2010) Antigenotoxic effect of mangiferin and changes in antioxidant enzyme levels of Swiss albino mice treated with cadmium chloride. Hum Exp Toxicol 29:409–18

    Article  PubMed  CAS  Google Scholar 

  32. Gabino G et al (2012) Polyphenols of Mangifera indica modulate arsenite-induced cytotoxicity in a human proximal tubule cell line. Rev Bras Farmacogn 22(2):325–334

    Article  Google Scholar 

  33. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  34. Xie C, Lovell MA, Xiong S, Kindy MS, Guo J, Xie J, Amaranth V, Montine TJ, Markesbery WR (2001) Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Radic Biol Med 31:73–81

    Article  PubMed  CAS  Google Scholar 

  35. Yang Y, Cheng JZ, Singhal SS, Saini M, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. J Biol Chem 276:19220–19230

    Article  PubMed  CAS  Google Scholar 

  36. Landrigan PJ (1989) Toxicity of lead at low dose. Br J Ind Med 46(9):593–596

    PubMed  CAS  Google Scholar 

  37. Bellinger D, Sloman J, Leviton A, Rabinowitz M, Needlemen HL, Waternaux C (1991) Low-level lead exposure and children’s cognitive function in the preschool years. Pediatrics 87:219–227

    PubMed  CAS  Google Scholar 

  38. Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26(3):359–371

    Article  PubMed  CAS  Google Scholar 

  39. Alber SA, Strupp BJ (1996) An in-depth analysis of lead effects in a delayed spatial alternation task: assessment of mnemonic effects, side bias, and proactive interference. Neurotoxicol Teratol 18:3–15

    Article  PubMed  CAS  Google Scholar 

  40. Cory-Slechta DA (1995) Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions. Annu Rev Pharmacol Toxicol 35:391–415

    Article  PubMed  CAS  Google Scholar 

  41. Hilson JA, Strupp BJ (1997) Analyses of response patterns clarify lead effects in olfactory reversal and extradimensional shift tasks: assessment of inhibitory control, associative ability, and memory. Behav Neurosci 111:532–542

    Article  PubMed  CAS  Google Scholar 

  42. Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–28

    Article  PubMed  Google Scholar 

  43. Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8(4):354–60

    Article  PubMed  CAS  Google Scholar 

  44. Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23(2):138–44

    Article  PubMed  CAS  Google Scholar 

  45. Vylegzhanina TA, Kuznetsova TE, Maneeva OA, Novikov II, Ryzhkovskaia EL (1993) Morphofunctional characteristics of the ovaries, thyroid gland and adrenal glands in experimental lead acetate poisoning. Med Tr Prom Ekol 9–10:6–8

    PubMed  Google Scholar 

  46. Pardo AG et al (2010) Mangiferin, a naturally occurring glucoxilxanthone improves long-term object recognition memory in rats. Eur J Pharmacol 635(1–3):124–8

    Article  Google Scholar 

  47. Chattopadhyay S et al (1984) Effect of mangiferin, a naturally occurring glucoxylxanthone, on reproductive function of rats. Pharm Res 61:279–282

    Article  Google Scholar 

  48. Chakrabarti DK, Ghosal S (1989) The disease cycle of mango malformation induced by Fusarium moniliforme var. subglutinans and the curative effects of mangiferin-metal chelates. J Phytopathol 125:238–246

    Article  CAS  Google Scholar 

  49. Pardo-Andreu GL et al (2005) Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate. Eur J Pharmacol 513:47–55

    Article  Google Scholar 

  50. Amazzal L, Lapotre A, Quignon F, Bagrel D (2007) Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells. Neurosci Lett 418(2):159–164

    Article  PubMed  CAS  Google Scholar 

  51. Jha HC, von Recklinghausen G, Zilliken F (1985) Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids. Biochem Pharmacol 34(9):1367–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the grant 10-046-04 from the Science and Technology Basic Condition Platform of Guangxi Zhuang Autonomous Region, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Di Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HW., Deng, JG., Du, ZC. et al. Protective Effects of Mangiferin in Subchronic Developmental Lead-Exposed Rats. Biol Trace Elem Res 152, 233–242 (2013). https://doi.org/10.1007/s12011-013-9610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9610-2

Keywords

Navigation