Skip to main content

Advertisement

Log in

Composition and Distribution of Elements and Ultrastructural Topography of a Human Cardiac Calculus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)–energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson’s correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM–EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daculsi G, Bouler JM, LeGeros RZ (1997) Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191

    Article  PubMed  CAS  Google Scholar 

  2. Bonucci E (2007) Biological calcification: normal and pathological processes in the early stages, 1st edn. Springer, Heidelberg

    Google Scholar 

  3. Skinner HCW (2005) Biominerals. Mineral Mag 69:621–641

    Article  CAS  Google Scholar 

  4. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  5. Dorozhkin SV (2009) Review: calcium orthophosphates in nature, biology and medicine. Materials 2:399–498

    Article  CAS  Google Scholar 

  6. Kawasaki K, Buchanan AV, Weiss KM (2009) Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43:119–142

    Article  PubMed  CAS  Google Scholar 

  7. Golub EE (2011) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33:409–417

    Article  PubMed  Google Scholar 

  8. Golovanova OA, Frank-Kamenetskaya OV, Punin YO (2011) Specific features of pathogenic mineral formation in the human body. Russian J General Chem 81:1392–1406

    Article  CAS  Google Scholar 

  9. Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243

    Article  PubMed  Google Scholar 

  10. Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38:281–292

    Article  PubMed  CAS  Google Scholar 

  11. Boström K (2001) Insights into the mechanism of vascular calcification. Am J Cardiol 88:20E–22E

    Article  PubMed  Google Scholar 

  12. Karwowski W, Naumnik B, Szczepański M, Myśliwiec M (2012) The mechanism of vascular calcification—a systematic review. Med Sci Monit 18:RA1–RA11

    Article  PubMed  CAS  Google Scholar 

  13. Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  PubMed  CAS  Google Scholar 

  14. Kirsch T (2008) Determinants of pathologic mineralization. Crit Rev Eukaryot Gene Expr 18:1–9

    Article  PubMed  CAS  Google Scholar 

  15. Mertz W (1981) The essential trace elements. Science 213:1332–1338

    Article  PubMed  CAS  Google Scholar 

  16. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244

    Article  PubMed  CAS  Google Scholar 

  17. Failla ML (2003) Trace elements and host defense: recent advances and continuing challenges. J Nutr 133:1443S–1447S

    PubMed  CAS  Google Scholar 

  18. Houtman JP (1996) Trace elements and cardiovascular diseases. J Cardiovasc Risk 3:18–25

    Article  PubMed  CAS  Google Scholar 

  19. Navarro Silvera SA, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18:7–27

    Article  PubMed  Google Scholar 

  20. Paluszkiewicz C, Gałka M, Kwiatek W, Parczewski A, Walas S (1997) Renal stone studies using vibrational spectroscopy and trace element analysis. Biospectroscopy 3:403–407

    Article  CAS  Google Scholar 

  21. Słojewski M, Czerny B, Safranow K, Jakubowska K, Olszewska M, Pawlik A, Gołąb A, Droździk M, Chlubek D, Sikorski A (2010) Microelements in stones, urine, and hair of stone formers: a new key to the puzzle of lithogenesis? Biol Trace Elem Res 137:301–316

    Article  PubMed  Google Scholar 

  22. Touryan LA, Lochhead MJ, Marquardt BJ, Vogel V (2004) Sequential switch of biomineral crystal morphology using trivalent ions. Nat Mater 3:239–241

    Article  PubMed  CAS  Google Scholar 

  23. Bazin D, Carpentier X, Traxer O, Thiaudière D, Somogyi A, Reguer S, Waychunas G, Jungers P, Daudon M (2008) Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchrotron Radiat 15:506–509

    Article  PubMed  CAS  Google Scholar 

  24. Słojewski M (2011) Major and trace elements in lithogenesis. Central Eur J Urol 64:58–61

    Article  Google Scholar 

  25. Fang X, Ahmad SR, Mayo M, Iqbal S (2005) Elemental analysis of urinary calculi by laser induced plasma spectroscopy. Lasers Med Sci 20:132–137

    Article  PubMed  Google Scholar 

  26. Mertz W (1982) Trace minerals and atherosclerosis. Fed Proc 41:2807–2812

    PubMed  CAS  Google Scholar 

  27. Masironi R, Miesch AT, Crawford MD, Hamilton EI (1972) Geochemical environments, trace elements, and cardiovascular diseases. Bull World Health Organ 47:139–150

    PubMed  CAS  Google Scholar 

  28. Moses HA (1979) Trace elements: an association with cardiovascular diseases and hypertension. J Natl Med Assoc 71:227–228

    PubMed  CAS  Google Scholar 

  29. Neri LC, Johansen HL, Hewitt D, Marier J, Langner N (1985) Magnesium and certain other elements and cardiovascular disease. Sci Total Environ 42:49–75

    Article  PubMed  CAS  Google Scholar 

  30. Shaper AG (1979) Cardiovascular disease and trace metals. Proc R Soc Lond B Biol Sci 205:135–143

    Article  PubMed  CAS  Google Scholar 

  31. Frustaci A, Magnavita N, Chimenti C, Caldarulo M, Sabbioni E, Pietra R, Cellini C, Possati GF, Maseri A (1999) Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J Am Coll Cardiol 33:1578–1583

    Article  PubMed  CAS  Google Scholar 

  32. Cheng CL, Chang HH, Lin SY (2012) First report of a giant cardiac calculus: morphology and chemical composition. Int J Cardiol 160:e28–e30

    Article  PubMed  Google Scholar 

  33. Cheng CL, Chang HH, Lin SY (2012) Spectroscopic study of chemical compositions of cardiac calculus using portable Raman analyzer with a fiber-optic probe. Biomed Spectro Imag 1:17–26

    Google Scholar 

  34. Debernardi N, Roijers RB, Krams R, de Crom R, Mutsaers PH, van der Vusse GJ (2010) Microcalcifications in atherosclerotic lesion of apolipoprotein E-deficient mouse. Int J Exp Pathol 91:485–494

    Article  PubMed  CAS  Google Scholar 

  35. Anderson HC (1988) Mechanisms of pathologic calcification. Rheum Dis Clin North Am 14:303–319

    PubMed  CAS  Google Scholar 

  36. Perk H, Serel TA, Koşar A, Deniz N, Sayin A (2002) Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urol Int 68:286–290

    Article  PubMed  CAS  Google Scholar 

  37. Pitchumoni CS, Viswanathan KV, Gee Varghese PJ, Banks PA (1987) Ultrastructure and elemental composition of human pancreatic calculi. Pancreas 2:152–158

    Article  PubMed  CAS  Google Scholar 

  38. Iskra M, Patelski J, Majewski W (1997) Relationship of calcium, magnesium, zinc and copper concentrations in the arterial wall and serum in atherosclerosis obliterans and aneurysm. J Trace Elem Med Biol 11:248–252

    Article  PubMed  CAS  Google Scholar 

  39. Bouras C, Giannakopoulos P, Good PF, Hsu A, Hof PR, Perl DP (1996) A laser microprobe mass analysis of trace elements in brain mineralizations and capillaries in Fahr’s disease. Acta Neuropathol 92:351–357

    Article  PubMed  CAS  Google Scholar 

  40. Neven E, De Schutter TM, Behets GJ, Gupta A, D’Haese PC (2011) Iron and vascular calcification. Is there a link? Nephrol Dial Transplant 26:1137–1145

    Article  PubMed  CAS  Google Scholar 

  41. Eidelman N, Boyde A, Bushby AJ, Howell PG, Sun J, Newbury DE, Miller FW, Robey PG, Rider LG (2009) Microstructure and mineral composition of dystrophic calcification associated with the idiopathic inflammatory myopathies. Arthritis Res Ther 11:R159

    Article  PubMed  Google Scholar 

  42. Abboud IA (2008) Concentration effect of trace metals in Jordanian patients of urinary calculi. Environ Geochem Health 30:11–20

    Article  PubMed  CAS  Google Scholar 

  43. Al-Kinani AT, Watt DE, East BW, Harris IA (1984) Minor and trace element analysis of gallstones. Analyst 109:365–368

    Article  PubMed  CAS  Google Scholar 

  44. Paluszkiewicz C, Kwiatek WM, Gaz XL, Lka M (1990) Trace element relations to renal stones phases. Nucl Instr Meth Phys Res B49:234–237

    Article  CAS  Google Scholar 

  45. Hofbauer J, Steffan I, Höbarth K, Vujicic G, Schwetz H, Reich G, Zechner O (1991) Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation. J Urol 145:93–96

    PubMed  CAS  Google Scholar 

  46. Boskey AL (1996) Matrix proteins and mineralization: an overview. Connect Tissue Res 35:357–363

    Article  PubMed  CAS  Google Scholar 

  47. Anderson RA (1986) Trace elements and cardiovascular diseases. Acta Pharmacol Toxicol (Copenh) 59:317S–324S

    Article  Google Scholar 

  48. Morrisett JD, Vickers KC (2008) Vascular calcification in homozygote familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 28:606–607

    Article  PubMed  CAS  Google Scholar 

  49. Demer LL (2001) Cholesterol in vascular and valvular calcification. Circulation 104:1881–1883

    PubMed  CAS  Google Scholar 

  50. Koşar F, Sahin I, Taşkapan C, Küçükbay Z, Güllü H, Taşkapan H, Cehreli S (2006) Trace element status (Se, Zn, Cu) in heart failure. Anadolu Kardiyol Derg 6:216–220

    PubMed  Google Scholar 

  51. Oster O, Dahm M, Oelert H, Prellwitz W (1989) Concentrations of some trace elements (Se, Zn, Cu, Fe, Mg, K) in blood and heart tissue of patients with coronary heart disease. Clin Chem 35:851–856

    PubMed  CAS  Google Scholar 

  52. Aalbers TG, Houtman JP (1985) Relationships between trace elements and atherosclerosis. Sci Total Environ 43:255–283

    Article  PubMed  CAS  Google Scholar 

  53. Elwood PC (1994) Iron, magnesium and ischaemic heart disease. Proc Nutr Soc 53:599–603

    Article  PubMed  CAS  Google Scholar 

  54. Izbirak A (2007) Serum selenium levels in ischaemic heart disease. Hacettepe J Biol Chem 35:101–104

    Google Scholar 

  55. Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M (2007) Heavy elements in urinary stones. Urol Res 35:179–184

    Article  PubMed  CAS  Google Scholar 

  56. Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kaiyoshi K (2006) Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method. J Eur Ceram Soc 26:509–513

    Article  CAS  Google Scholar 

  57. LeGeros RZ (2001) Formation and transformation of calcium phosphates: relevance to vascular calcification. Z Kardiol 90(Suppl 3):116–124

    PubMed  Google Scholar 

  58. Roijers RB, Debernardi N, Cleutjens JP, Schurgers LJ, Mutsaers PH, van der Vusse GJ (2011) Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol 178:2879–2887

    Article  PubMed  CAS  Google Scholar 

  59. Durak I, Yasar A, Yurtarslani Z, Akpoyraz M, Tasman S (1988) Analysis of magnesium and trace elements in urinary calculi by atomic absorption spectrophotometry. Br J Urol 62:203–205

    Article  PubMed  CAS  Google Scholar 

  60. Erbel R, Budoff M (2012) Improvement of cardiovascular risk prediction using coronary imaging: subclinical atherosclerosis: the memory of lifetime risk factor exposure. Eur Heart J 33:1201–1213

    Article  PubMed  Google Scholar 

  61. Sjouke B, Kusters DM, Kastelein JJ, Hovingh GK (2011) Familial hypercholesterolemia: present and future management. Curr Cardiol Rep 13:527–536

    Article  PubMed  CAS  Google Scholar 

  62. Lepage S, Bonnefont-Rousselot D, Bruckert E, Bourely B, Jaudon MC, Delattre J, Assogba U (1996) Antioxidant status of hypercholesterolemic patients treated with LDL apheresis. Cardiovasc Drugs Ther 10:567–571

    Article  PubMed  CAS  Google Scholar 

  63. Thuillier-Juteau Y, Jaudon MC, Clavel JP, Delattre J, Galli A (1987) Serum zinc and copper in hypercholesterolemia. Pathol Biol (Paris) 35:387–390

    CAS  Google Scholar 

  64. Lee O, Moon J, Chung Y (2003) The relationship between serum selenium levels and lipid profiles in adult women. J Nutr Sci Vitaminol (Tokyo) 49:397–404

    Article  CAS  Google Scholar 

  65. Dhingra S, Bansal MP (2006) Modulation of hypercholesterolemia-induced alterations in apolipoprotein B and HMG-CoA reductase expression by selenium supplementation. Chem Biol Interact 161:49–56

    Article  PubMed  CAS  Google Scholar 

  66. Aalbers TG, Houtman JP, Makkink B (1987) Trace-element concentrations in human autopsy tissue. Clin Chem 33:2057–2064

    Google Scholar 

  67. Wester PO (1965) Concentration of 24 trace elements in human heart tissue determined by neutron activation analysis. Scand J Clin Lab Invest 17:357–370

    Google Scholar 

  68. Muniz CS, Fernandez-Martin JL, Marchante-Gayon JM, Garcia Alonso JI, Cannata-Andia JB, Sanz-Medel A (2001) Reference values for trace and ultratrace elements in human serum determined by double-focusing ICP-MS. Biol Trace Elem Res 82:259–272

    Google Scholar 

  69. Matsuura H, Hokura AH, Katsuki F, Itoh A, Haraguchi H (2001) Multielement determination and speciation of major-to trace elements in black tea leaves by ICP-AES and ICP-MS with the aid of size exclusion chromatography. Anal Sci 17:391–398

    Google Scholar 

  70. Minski M, Cleary JJ (1966) The estimation of stable sulphur in human tissue. Health Phys 12:837–842.

    Google Scholar 

  71. Templeton DM, Sunderman FW Jr, Herber RF (1994) Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: evaluation according to the TRACY protocol. Sci Total Environ 148:243–251

    Google Scholar 

  72. Tsalev DL, Zaprianow ZK (1983) Atomic absorption spectrometry in occupational and environmental health practice, vol. II. CRC press, Boca Raton

Download references

Acknowledgments

This study was partially supported by a grant from Taiwan Association of Cardiac Vascular Surgery Research. The authors highly appreciate Mr. Shawn Huang (Protech Pharmaservices Corp. Taipei, Taiwan, ROC.) for his valuable assistance with X-ray fluorescence analysis and Prof. Wei-Teh Jiang (Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan, ROC) for his active support in the use of X-ray microanalysis on environmental scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsiao-Huang Chang or Shan-Yang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, CL., Chang, HH., Huang, PJ. et al. Composition and Distribution of Elements and Ultrastructural Topography of a Human Cardiac Calculus. Biol Trace Elem Res 152, 143–151 (2013). https://doi.org/10.1007/s12011-013-9603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9603-1

Keywords

Navigation