Selenium Species and Their Distribution in Freshwater Fish from Argentina


The distribution and speciation of selenium (Se) in freshwater fish (muscle and liver tissue) from lakes in Argentina was investigated. Three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis), and one native species, creole perch (Percichthys trucha), were investigated. Values for total selenium in muscle ranged from 0.66 to 1.61 μg/g, while in the liver, concentrations were much higher, from 4.46 to 73.71 μg/g on a dry matter basis. Separation of soluble Se species (SeCys2, selenomethionine (SeMet), SeMeSeCys, selenite and selenate) was achieved by ion exchange chromatography and detection was performed by inductively coupled plasma–mass spectrometry. The results showed that in fish muscle, from 47 to 55 % of selenium was soluble and the only Se species identified was SeMet, which represented around 80 % of soluble Se, while in the liver, the amount of soluble Se ranged from 61 to 76 % and the percentage of species identified (SeMet and SeCys2) was much lower and ranged from 8 to 17 % of soluble Se.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Stone NJ (1996) Fish consumption, fish oil, lipids and coronary heart disease. Circulation 94:2337–2340

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Kris Etherton PM, Hariss WS, Appel LJ, For the Nutrition Committee (2002) AHA scientific statement. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    PubMed  Article  Google Scholar 

  3. 3.

    Plessi M, Bertelli D, Monzani A (2001) Mercury and selenium content in selected seafood. J Food Compos Anal 14:461–467

    Article  CAS  Google Scholar 

  4. 4.

    Lavilla I, Gonzáles Costas Benicho C (2007) Improved microwave-assisted wet digestion procedures for accurate Se determination in fish and shellfish by flow injection-hydride generation-atomic absorption spectrometry. Anal Chim Acta 591:225–230

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Yoshida S, Haratake M, Fuchigami T, Nakayama M (2011) Selenium in seafood materials. J Health Sci 57:215–224

    Article  CAS  Google Scholar 

  6. 6.

    Önning G (2000) Separation of soluble selenium compounds in different fish species. Food Chem 68:133–139

    Article  Google Scholar 

  7. 7.

    Moreno P, Quijano MA, Gutiérrez AM, Pérez Conde MC, Cámara C (2004) Study of selenium species distribution in biological tissues by size exclusion and ion exchange chromatography inductively coupled plasma mass spectrometry. Anal Chim Acta 524:315–327

    Article  CAS  Google Scholar 

  8. 8.

    Cabañero AI, Madrid Y, Càmara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526:51–61

    Article  Google Scholar 

  9. 9.

    Cabañero AI, Madrid Y, Cámara C (2007) Mercury selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol Trace Elem Res 119:195–211

    PubMed  Article  Google Scholar 

  10. 10.

    Quijano MA, Moreno P, Gutierrez AM, Perez Conde MC, Camara C (2000) Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J Mass Spectrom 35:878–884

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Gonçalves-Ventura M (2008) Studies for the evaluation of selenium levels in typical constituents of Portuguese diets. Dissertation, Technical University of Lisbon

  12. 12.

    Arribére MA, Ribeiro Guevara S, Bubach DF, Arcagni M, Vigliano PH (2008) Selenium and mercury in native and introduced fish species of Patagonia lakes, Argentina. Biol Trace Elem Res 122:42–63

    PubMed  Article  Google Scholar 

  13. 13.

    Smrkolj P, Stibilj V, Kreft I, Kapolna E (2005) Selenium species determination in selenium-enriched pumpkin (Cucurbita pepo L.) seeds by HPLC-UV-HG-AFS. Anal Sci 21:1501–1504

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Mazej D, Falnoga I, Veber M, Stibilj V (2006) Determination of selenium species in plant leaves by HPLC-UV-HG-AFS. Talanta 68:558–568

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Smrkolj P, Stibilj V (2004) Determination of selenium in vegetables by hydride generation atomic fluorescence spectrometry. Anal Chim Acta 512:11–17

    Article  CAS  Google Scholar 

  16. 16.

    Cuderman P, Kreft I, Germ M, Kovačevič M, Stibilj V (2008) Selenium species in selenium-enriched and drought exposed potatoes. J Agric Food Chem 56:9114–9120

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Miklavčič A, Stibilj V, Heath E, Polak T, Snoj Tratnik J, Klavž J, Mazej D, Horvat M (2011) Mercury, selenium, PCBs and fatty acids in fresh and canned fish available on the Slovenia market. Food Chem 124:711–720

    Article  Google Scholar 

  18. 18.

    Kaneko JJ, Ralston NVC (2007) Selenium and mercury in pelagic fish in the Central North Pacific near Hawai. Biol Trace Elem Res 119:242–254

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Lemly AD (1998) Pathology of selenium poisoning in fish. In: Frankenberger J, William T, Engberg RA (eds) Environmental chemistry of selenium, 1st edn. Marcel Dekker, New York, pp 281–296

    Google Scholar 

  20. 20.

    Adotey D, Cuderman P, Stibilj V (2011) Selenium speciation in fish from Ghana (IJS working report no. 10811)

Download references


The authors are grateful to Sergio Ribeiro Guevara from Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche in Argentina for donation and preparation of the fish samples. We would like to thank Prof. Kevin A. Francesconi and his group from Karl-Franzens-University, Graz, Austria, for the donation of the TMSe+ standard. This research was financed by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia through the programme ‘Young researchers’ (03781) and the programme P1-0143.

Author information



Corresponding author

Correspondence to Vekoslava Stibilj.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kristan, U., Arribére, M.A. & Stibilj, V. Selenium Species and Their Distribution in Freshwater Fish from Argentina. Biol Trace Elem Res 151, 240–246 (2013).

Download citation


  • Selenium
  • Fish
  • Liver
  • Speciation
  • HG-AFS