Skip to main content
Log in

The Effects of Cobalt on the Development, Oxidative Stress, and Apoptosis in Zebrafish Embryos

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0–100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0–500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stabler SP, Allen RH (2004) Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr 24:299–326

    Article  PubMed  CAS  Google Scholar 

  2. Case CP (2001) Chromosomal changes after surgery for joint replacement. J Bone Joint Surg Br 83(8):1093–1095

    Article  PubMed  CAS  Google Scholar 

  3. Jiang H, Liu F, Yang H, Li Y (2012) Effects of cobalt nanoparticles on human T cells in vitro. Biol Trace Elem Res 146(1):23–29

    Article  PubMed  CAS  Google Scholar 

  4. Olivieri G, Hess C, Savaskan E, Ly C, Meier F, Baysang G, Brockhaus M, Muller-Spahn F (2001) Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. J Pineal Res 31(4):320–325

    Article  PubMed  CAS  Google Scholar 

  5. De Boeck M, Kirsch-Volders M, Lison D (2003) Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res 533(1–2):135–152

    PubMed  Google Scholar 

  6. Kasten U, Mullenders LH, Hartwig A (1997) Cobalt(II) inhibits the incision and the polymerization step of nucleotide excision repair in human fibroblasts. Mutat Res 383(1):81–89

    Article  PubMed  CAS  Google Scholar 

  7. IARC (2006) Cobalt in hard metals and cobalt sulphate, gallium arsenide, indium phosphide and vanadium pentoxide. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 86. Lyon, France

  8. Anissian HL, Stark A, Gustafson A, Good V, Clarke IC (1999) Metal-on-metal bearing in hip prosthesis generates 100-fold less wear debris than metal-on-polyethylene. Acta Orthop Scand 70(6):578–582

    Article  PubMed  CAS  Google Scholar 

  9. Figgitt M, Newson R, Leslie IJ, Fisher J, Ingham E, Case CP (2010) The genotoxicity of physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res 688(1–2):53–61

    PubMed  CAS  Google Scholar 

  10. Szakmary E, Ungvary G, Hudak A, Tatrai E, Naray M, Morvai V (2001) Effects of cobalt sulfate on prenatal development of mice, rats, and rabbits, and on early postnatal development of rats. J Toxicol Environ Health A 62(5):367–386

    Article  PubMed  CAS  Google Scholar 

  11. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  PubMed  CAS  Google Scholar 

  12. Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP (2010) The John Charnley Award: metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 468(2):318–325

    Article  PubMed  Google Scholar 

  13. Bozic KJ, Kurtz S, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ (2009) The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J Bone Joint Surg Am 91(7):1614–1620

    Article  PubMed  Google Scholar 

  14. Ziaee H, Daniel J, Datta AK, Blunt S, McMinn DJ (2007) Transplacental transfer of cobalt and chromium in patients with metal-on-metal hip arthroplasty: a controlled study. J Bone Joint Surg Br 89(3):301–305

    Article  PubMed  CAS  Google Scholar 

  15. Imanishi T, Hasegawa M, Sudo A (2010) Serum metal ion levels after second-generation metal-on-metal total hip arthroplasty. Arch Orthop Trauma Surg 130(12):1447–1450

    Article  PubMed  Google Scholar 

  16. Oldenburg M, Wegner R, Baur X (2009) Severe cobalt intoxication due to prosthesis wear in repeated total hip arthroplasty. J Arthroplast 24(5):825.e15, 825.e20

    Article  Google Scholar 

  17. Calabrese EJ, Baldwin LA (2003) Inorganics and hormesis. Crit Rev Toxicol 33(3–4):215–304

    Article  PubMed  CAS  Google Scholar 

  18. Yamagani K (1988) Mechanisms of hatching in fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol. 11a. Academic, New York, pp 447–449

    Google Scholar 

  19. Dave G, Xiu RQ (1991) Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol 21(1):126–134

    Article  PubMed  CAS  Google Scholar 

  20. Naziroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  PubMed  CAS  Google Scholar 

  21. Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 1(2):56–69

    Google Scholar 

  22. Ozkaya MO, Naziroglu M (2010) Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil Steril 94(6):2465–2466

    Article  PubMed  Google Scholar 

  23. Ozkaya MO, Naziroglu M, Barak C, Berkkanoglu M (2011) Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro fertilization (IVF). Biol Trace Elem Res 139(1):1–9

    Article  PubMed  Google Scholar 

  24. Ray G, Husain SA (2002) Oxidants, antioxidants and carcinogenesis. Indian J Exp Biol 40(11):1213–1232

    PubMed  CAS  Google Scholar 

  25. Pi J, Zhang Q, Fu J, Woods CG, Hou Y, Corkey BE, Collins S, Andersen ME (2010) ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol 244(1):77–83

    Article  PubMed  CAS  Google Scholar 

  26. Kubrak OI, Husak VV, Rovenko BM, Storey JM, Storey KB, Lushchak VI (2011) Cobalt-induced oxidative stress in brain, liver and kidney of goldfish Carassius auratus. Chemosphere 85(6):983–989

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36(1):1–9

    Article  PubMed  CAS  Google Scholar 

  28. Christova TY, Gorneva GA, Taxirov SI, Duridanova DB, Setchenska MS (2003) Effect of cisplatin and cobalt chloride on antioxidant enzymes in the livers of Lewis lung carcinoma-bearing mice: protective role of heme oxygenase. Toxicol Lett 138(3):235–242

    Article  PubMed  CAS  Google Scholar 

  29. Fleury C, Petit A, Mwale F, Antoniou J, Zukor DJ, Tabrizian M, Huk OL (2006) Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials 27(18):3351–3360

    Article  PubMed  CAS  Google Scholar 

  30. Pulido MD, Parrish AR (2003) Metal-induced apoptosis: mechanisms. Mutat Res 533(1–2):227–241

    PubMed  CAS  Google Scholar 

  31. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274(29):20049–20052

    Article  PubMed  CAS  Google Scholar 

  32. Masumura M, Hata R, Nishimura I, Uetsuki T, Sawada T, Yoshikawa K (2000) Caspase-3 activation and inflammatory responses in rat hippocampus inoculated with a recombinant adenovirus expressing the Alzheimer amyloid precursor protein. Brain Res Mol Brain Res 80(2):219–227

    Article  PubMed  CAS  Google Scholar 

  33. Araya J, Maruyama M, Inoue A, Fujita T, Kawahara J, Sassa K, Hayashi R, Kawagishi Y, Yamashita N, Sugiyama E, Kobayashi M (2002) Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 283(4):L849–L858

    PubMed  CAS  Google Scholar 

  34. Zou W, Zeng J, Zhuo M, Xu W, Sun L, Wang J, Liu X (2002) Involvement of caspase-3 and p38 mitogen-activated protein kinase in cobalt chloride-induced apoptosis in PC12 cells. J Neurosci Res 67(6):837–843

    Article  PubMed  CAS  Google Scholar 

  35. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867):45–53

    Article  PubMed  CAS  Google Scholar 

  36. Sheikh MS, Fornace AJ Jr (2000) Role of p53 family members in apoptosis. J Cell Physiol 182(2):171–181

    Article  PubMed  CAS  Google Scholar 

  37. Wang T, Chen F, Chen Z, Wu YF, Xu XL, Zheng S, Hu X (2004) Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J Gastroenterol 10(15):2205–2208

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 81171705 and 81101381). The authors would like to thank Jiye He, Xiaoquan Li, Jiwen Bu, Shanye Gu, and Xufei Du for their technical help and writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, G., Zhu, J., Shen, C. et al. The Effects of Cobalt on the Development, Oxidative Stress, and Apoptosis in Zebrafish Embryos. Biol Trace Elem Res 150, 200–207 (2012). https://doi.org/10.1007/s12011-012-9506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9506-6

Keywords

Navigation