Skip to main content
Log in

Effect of Trypsin and Mucin on Heme Iron Bioavailability in Humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the human gastrointestinal tract, trypsin and mucin may affect the absorption of heme iron. However, these interactions have not been well-established. We determined the effect of trypsin and mucin on heme iron absorption in humans. Design: Twenty-eight apparently healthy females participated in two studies (14 per study). Study A evaluated the effect of trypsin on iron bioavailability. Subjects ingested 100 mg trypsin and 1.7 g mucin on 5 mg heme iron bioavailability on days 1, 2, 14, and 15, respectively. In study B, which assessed the effect of mucin on heme iron bioavailability, the subjects ingested hemin, hemin plus mucin, hemoglobin (Hb), and Hb plus mucin, on days 1, 2, 14, and 15, respectively. Results: In study A, the geometric means ± 1 SD of heme iron absorption were 5.1 % (3.1–8.3), 2.9 % (1.6–5.1), 7.3 % (4.1–13.1), and 6 % (2.7–13) for hemin, hemin plus trypsin, Hb plus trypsin, and Hb plus mucin plus trypsin, respectively. In study B, the geometric means ± 1 SD of heme iron absorption were 16.4 % (10.5–25.7), 13.1 % (9.0–18.9), 13.7 % (9.0–20.7), and 11.8 % (7.6–18.3) for hemin, hemin plus mucin, Hb, and Hb plus mucin, respectively. The ratio increased when Hb plus trypsin was ingested and decreased when hemin plus trypsin was ingested. There were no differences in other ratios with respect to the ratio on day 1 (P < 0.05). Conclusion: Trypsin is the only human gastrointestinal protein that evaluated the affects of heme iron absorption. However, this effect depends on how heme iron is ingested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sharp P, Srai SK (2007) Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol 13(35):4716–4724

    PubMed  CAS  Google Scholar 

  2. Layrisse M, Martinez-Torres C, Cook JD, Walker R, Finch CA (1973) Iron fortification of food: its measurement by the extrinsic tag method. Blood 41(3):333–352

    PubMed  CAS  Google Scholar 

  3. Hurrell RF, Juillerat MA, Reddy MB, Lynch SR, Dassenko SA, Cook JD (1992) Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr 56(3):573–578

    PubMed  CAS  Google Scholar 

  4. Hallberg L, Brune M, Erlandsson M, Sandberg AS, Rossander-Hulten L (1991) Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. Am J Clin Nutr 53(1):112–119

    PubMed  CAS  Google Scholar 

  5. Disler PB, Lynch SR, Torrance JD, Sayers MH, Bothwell TH, Charlton RW (1975) The mechanism of the inhibition of iron absorption by tea. S Afr J Med Sci 40(4):109–116

    PubMed  CAS  Google Scholar 

  6. Disler PB, Lynch SR, Charlton RW, Torrance JD, Bothwell TH, Walker RB, Mayet F (1975) The effect of tea on iron absorption. Gut 16(3):193–200

    Article  PubMed  CAS  Google Scholar 

  7. Cook JD, Morck TA, Lynch SR (1981) The inhibitory effect of soy products on nonheme iron absorption in man. Am J Clin Nutr 34(12):2622–2629

    PubMed  CAS  Google Scholar 

  8. Martinez-Torres C, Leets I, Renzi M, Layrisse M (1974) Iron absorption by humans from veal liver. J Nutr 104(8):983–993

    PubMed  CAS  Google Scholar 

  9. Atallah AN, Hofmeyr GJ, Duley L (2000) Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev (2):CD001059

  10. Hallberg L, Bjorn-Rasmussen E, Howard L, Rossander L (1979) Dietary heme iron absorption. A discussion of possible mechanisms for the absorption-promoting effect of meat and for the regulation of iron absorption. Scand J Gastroenterol 14(7):769–779

    Article  PubMed  CAS  Google Scholar 

  11. Jin F, Welch R, Glahn R (2006) Moving toward a more physiological model: application of mucin to refine the in vitro digestion/Caco-2 cell culture system. J Agric Food Chem 54(23):8962–8967

    Article  PubMed  CAS  Google Scholar 

  12. Uc A, Stokes JB, Britigan BE (2004) Heme transport exhibits polarity in Caco-2 cells: evidence for an active and membrane protein-mediated process. Am J Physiol Gastrointest Liver Physiol 287(6):G1150–G1157

    Article  PubMed  CAS  Google Scholar 

  13. Asenjo J, Amar M, Cartagena N, King J, Hiche E, Stekel A (1985) Use of a bovine heme iron concentrate in the fortification of biscuits. J Food Sci 50:795–799

    Article  CAS  Google Scholar 

  14. Labbe RF, Nishida G (1957) A new method of hemin isolation. Biochim Biophys Acta 26(2):437

    Article  PubMed  CAS  Google Scholar 

  15. Flowers CA, Kuizon M, Beard JL, Skikne BS, Covell AM, Cook JD (1986) A serum ferritin assay for prevalence studies of iron deficiency. Am J Hematol 23(2):141–151

    Article  PubMed  CAS  Google Scholar 

  16. WHO, CDC (2007) Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level. WHO, Geneve

  17. WHO (2001) Iron deficiency anaemia assessment, prevention, and control: a guide for programme managers. WHO, Geneve

  18. Eakins JD, Brown DA (1966) An improved method for the simultaneous determination of iron-55 and iron-59 in blood by liquid scintillation counting. Int J Appl Radiat Isot 17(7):391–397

    Article  PubMed  CAS  Google Scholar 

  19. Nadler S, Hidalgo I, Bloch T (1962) Prediction of blood volume in normal human adults. Surgery 51(2):224–232

    PubMed  Google Scholar 

  20. Bothwell TH, Charlton RW, Cook JD, Finch CA (1979) Iron metabolism in man. Blackwell, Oxford

    Google Scholar 

  21. Lentner C (1981) Geigy scientific tables: units of measurements, body fluids, composition of the body, and nutrition, 8th edn. Ciba Pharmaceutical Co, Basel, Vol. 1

    Google Scholar 

  22. Guyton A, Hall J (2006) Text book of medical physiology, 11th edn. Elsevier, Philadelphia

    Google Scholar 

  23. Conrad ME, Cortell S, Williams HL, Foy AL (1966) Polymerization and intraluminal factors in the absorption of hemoglobin-iron. J Lab Clin Med 68(4):659–668

    PubMed  CAS  Google Scholar 

  24. Perez-Vilar J, Hill RL (1999) The structure and assembly of secreted mucins. J Biol Chem 274(45):31751–31754

    Article  PubMed  CAS  Google Scholar 

  25. Bansil R, Stanley E, LaMont JT (1995) Mucin biophysics. Annu Rev Physiol 57:635–657

    Article  PubMed  CAS  Google Scholar 

  26. Magdanz M (1969) Studies of the structural homology of chymotrypsin and trypsin. University of Washington, Seattle

    Google Scholar 

Download references

Acknowledgments

The study was supported by grant 1061060 from Fondo Nacional de Ciencia y Tecnología Chile. We thank Ms. Angélica Letelier for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cediel, G., Olivares, M., Gaitán, D. et al. Effect of Trypsin and Mucin on Heme Iron Bioavailability in Humans. Biol Trace Elem Res 150, 37–41 (2012). https://doi.org/10.1007/s12011-012-9483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9483-9

Keywords

Navigation