In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture

Abstract

In the last decades, extensive research on the effects of nano-TiO2 on plant systems and different microorganisms has confirmed its photocatalytic and antimicrobial activity. However, there is no report on its application in plant cell and tissue culture as well as its role in eliminating contaminating microorganisms in tissue culture. In this work, barley mature embryos were cultured in Murashige and Skoog medium with four concentrations (0, 10, 30, 60 μg/ml) of TiO2 suspension in four repetitions. Quantitative and qualitative characteristics of calli were analyzed after each subculture. Data analysis for calli number in the first culture and callus size in all three cultures showed that the effect of treatment was significant at p > 0.95. As a result, quantitative features such as callus color, shape, embryogenesis, etc. were completely similar in both control and TiO2 nanoparticle treatments; there is no doubt that TiO2 nanoparticles could dramatically increase callugenesis and the size of calli. As well, TiO2 nanoparticles are effective bactericides with an aseptic effect, causing no negative change in the quality of the callus. It is necessary to do more complementary works to identify mechanisms involved for the increased calli size and embryogenesis of explants in darkness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

TiO2 NP:

TiO2 nanoparticle

References

  1. 1.

    Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30:709–714

    Article  CAS  Google Scholar 

  2. 2.

    Albrecht MA, Evan CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  3. 3.

    Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449. doi:10.1007/s11051-010-0135-8

    Article  Google Scholar 

  4. 4.

    Coleman HMZ, Marquis CP, Scott JA, Chin SS, Amal R (2005) Bactericidal effects of titanium dioxide-based photocatalysts. Chem Eng J 113(1):55–63

    Article  CAS  Google Scholar 

  5. 5.

    Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide TiO2 nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–280

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Klancnik K, Drobne D, Valant J, DolencKoce J (2011) Use of a modified Allium test with nanoTiO2. Ecotoxicol Environ Saf 74:85–92

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, Wang SL (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46:3626–3631

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK (2000) Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J Catal 192(1):185–196

    Article  CAS  Google Scholar 

  10. 10.

    Menard A, Damjana D, Jeme C (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  12. 12.

    Mingyu S, Hong F, Liu C, Wu X, Liu X, Chen L, Gao F, Yang F, Li Z (2009) Effects of nano-anatase TiO2 on absorption, distribution of light and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 131:101. doi:10.1007/s12011-009-8430-x

    Article  Google Scholar 

  13. 13.

    Mingyu S, Liu J, Yin S, Linglan M, Hong F (2008) Effects of nano-anatase on the photosynthetic improvement of chloroplast damaged by linolenic acid. Biol Trace Elem Res 124:173–183

    Article  Google Scholar 

  14. 14.

    Murashing T, Skoog F (1962) A received medium for rapid growth and bio-assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  Google Scholar 

  15. 15.

    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2008) Nano particulate material delivery to plants. Plant Sci. doi:10.1016/j.plantsci.2010.04.012

  16. 16.

    Namrata M, Avinash I, Aniket G, Mahendra R (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18:1

    Google Scholar 

  17. 17.

    Peter D (2010) The plant hormones: their nature, occurrence, and functions. Plant Horm. doi:10.1007/978-1-4020-2686-7-1

  18. 18.

    Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. doi:10.1088/0957-4484/19/14/145605

  19. 19.

    Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Part Sci Technol 43(12):4227–4233. doi:10.1021/es8032549

    Article  CAS  Google Scholar 

  20. 20.

    Sadiq MI, Chandrasekaran N, Mukherjee A (2010) Studies on effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Curr Nanosci 6(4):381–387

    Article  CAS  Google Scholar 

  21. 21.

    Safavi K, Esfahanizadeh M, Mortazaeinezahad, Dastjerd H (2011) The study of nano silver (NS) antimicrobial activity and evaluation of using NS in tissue culture media. International Conference on Life Science and Technology IPCBEE 3. IACSIT Press, Singapore

  22. 22.

    Sauret-Güeto S, Calder G, Harberd NP (2012) Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. Plant J 69(4):628–639. doi:10.1111/j.1365-313X.2011.04817

    PubMed  Article  Google Scholar 

  23. 23.

    Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediment 9(1):46–53. doi:10.1007/s11368-008-0034-0

    Article  CAS  Google Scholar 

  24. 24.

    Seeger EM, Baun A, Kästner M, Trapp S (2008) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediment 9:46–53

    Article  Google Scholar 

  25. 25.

    Smart DR, Ferro A, Ritchie K, Bugbee BG (1995) On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations. Physiol Plant 95:533–540

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tsai TM, Chang HH, Chang KC, Liua YL, Tseng CC (2010) A comparative study of the bactericidal effect of photo catalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.2476

  27. 27.

    Viana MM, Soares VF, Mohallem NDS (2010) Synthesis and characterization of TiO2 nanoparticles. Ceram Int 36:2047–2053

    Article  CAS  Google Scholar 

  28. 28.

    Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. PNAS 98(18):10487–10492

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    West TP, Preece JE (2006) Use of acephate, benomyl and alginate encapsulation for eliminating culture mites and fungal contamination from in vitro cultures of hardy hibiscus (Hibiscus moscheutosL.). In Vitro Cell Dev Biol Plant 42:301–304

    Article  CAS  Google Scholar 

  30. 30.

    Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Yao KS, Wang DY, Ho WY, Yan JJ, Tzeng KC (2007) Photo catalytic bactericidal effect of TiO2 thin film on plant pathogens. Surf Coat Technol 201:6886–6888

    Article  CAS  Google Scholar 

  32. 32.

    Zheng B, Sun J, Zhang S, Deng Y, Zuo J (2003) Cytokinin signal transduction: known simplicity and unknown complexity. Chin Sci Bull 48(13):1309–1315. doi:10.1007/BF03184168

    CAS  Google Scholar 

  33. 33.

    Zheng L, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79. doi:10.1007/s12011-007-8028-0

    Article  CAS  Google Scholar 

  34. 34.

    Zheng L, Hong F, Lu S, Liu C (2005) Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rahaie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandeh, M., Omidi, M. & Rahaie, M. In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture. Biol Trace Elem Res 150, 376–380 (2012). https://doi.org/10.1007/s12011-012-9480-z

Download citation

Keywords

  • TiO2 nanoparticles
  • Barley tissue culture
  • Callugenesis
  • Bactericide