Abstract
This study investigated the effects of excess zinc intake on the mean arterial pressure (MAP), renal blood flow (RBF), inulin clearance (IC), serum zinc level, serum angiotensin-converting enzyme (ACE) activity, and kidney angiotensin II (AT II) levels in rats. Experiments were performed on male Sprague–Dawley rats maintained for 4 weeks on a diet containing either 5 mg/100 g (control group), 50 mg/100 g (Zn50 group), or 200 mg/100 g (Zn200 group) zinc carbonate. Serum zinc levels significantly increased to 126.5 % in the Zn50 group and 198.1 % in the Zn200 group compared with controls. MAP significantly increased to 107.8 % in the Zn50 group and 114.5 % in the Zn200 group again compared with controls. Although the difference in serum ACE activity was independent of the serum zinc levels, the kidney AT II levels increased significantly to 137.2 % in the Zn50 group and 174.4 % in the Zn200 group compared with the controls. RBF was decreased significantly to 74.4 % in the Zn50 group and 69.7 % in the Zn200 group compared with the controls. IC values were significantly decreased to 69.6 % in the Zn50 group and 52.7 % in the Zn200 group as compared with control levels. Combined together, these results show that excessive Zn intake reduced IC and RBF and increased MAP and kidney AT II levels, suggesting that excessive Zn intake reduces renal function.
This is a preview of subscription content, access via your institution.






References
Lønnebakken MT, Gerdts E, Boman K, Wachtell K, Dahlöf B, Devereux RB (2011) In-treatment stroke volume predicts cardiovascular risk in hypertension. J Hypertens 29:1508–1514
Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97
Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin–angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287
Hansson L, Lindholm LH, Niskanen L, Lanke J, Hedner T, Niklason A, Luomanmäki K, Dahlöf B, de Faire U, Mörlin C, Karlberg BE, Wester PO, Björck JE (1999) Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353:611–616
Sacks FM, Willett WC, Smith A, Brown LE, Rosner B, Moore TJ (1998) Effect on blood pressure of potassium, calcium, and magnesium in women with low habitual intake. Hypertension 31:131–138
Sacerdoti D, Escalante B, Abraham NG, McGiff JC, Levere RD, Schwartzman ML (1989) Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science 243:388–390
Sato M, Kurihara N, Moridaira K, Sakamoto H, Tamura J, Wada O, Yanagisawa H (2003) Dietary Zn deficiency does not influence systemic blood pressure and vascular nitric oxide signaling in normotensive rats. Biol Trace Elem Res 91:157–171
Sato M, Yanagisawa H, Nojima Y, Tamura J, Wada O (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: possible role of Cu/Zn-superoxide dismutase. Clin Exp Hypertens 24:355–370
Takenaka T, Suzuki H, Furukawa T, Ogata Y, Saruta T (1990) Role of intrarenal renin–angiotensin system on pressure-natriuresis in spontaneously hypertensive rats. Clin Exp Hypertens 12:1377–1394
Palm F, Onozato M, Welch WJ, Wilcox CS (2010) Blood pressure, blood flow, and oxygenation in the clipped kidney of chronic 2-kidney, 1-clip rats: effects of tempol and angiotensin blockade. Hypertension 55:298–304
Yanagisawa H, Sato M, Nodera M, Wada O (2004) Excessive zinc intake elevates systemic blood pressure levels in normotensive rats—potential role of superoxide-induced oxidative stress. J Hypertens 22:543–550
Prasad AS, Oberleas D, Wolf P, Horwitz HP (1967) Studies on zinc deficiency: changes in trace elements and enzyme activities in tissues of zinc-deficient rats. J Clin Invest 46:549–557
Reeves PG, O'Dell BL (1985) An experimental study of the effect of zinc on the activity of angiotensin converting enzyme in serum. Clin Chem 31:581–584
Modrall JG, Sadjadi J, Brosnihan KB, Gallagher PE, Yu CH, Kramer GL, Bernstein KE, Chappell MC (2004) Depletion of tissue angiotensin-converting enzyme differentially influences the intrarenal and urinary expression of angiotensin peptides. Hypertension 43:849–853
Meret S, Henkin RI (1971) Simultaneous direct estimation by atomic absorption spectrophotometry of copper and zinc in serum, urine, and cerebrospinal fluid. Clin Chem 17:369–373
Kasahara Y, Ashihara Y (1981) Colorimetry of angiotensin-I converting enzyme activity in serum. Clin Chem 27:1922–1925
Miyazaki T, Takenaka T, Inoue T, Sato M, Eiki Y, Nodera M, Hanyu M, Ohno Y, Shibazaki S, Suzuki H (2009) Zinc deficiency may accelerate aging by inhibiting Klotho mRNA expression. Trace Nut Res 26:74–78
Gallery EDM, Blomfield J, Dixon SR (1972) Acute zinc toxicity in haemodialysis. Brit Med J 4:331–333
Clegg MS, Ferrell F, Keen CL (1987) Hypertension-induced alterations in copper and zinc metabolism in Dahl rats. Hypertension 9:624–628
Takenaka T, Hayashi K, Ikenaga H (2004) Blood pressure regulation and renal microcirculation. Contrib Nephrol 143:46–64
Stevenson KM, Fitzgerald SM, Evans RG, Anderson WP (1997) Chronic intrarenal infusion of low-dose angiotensin II in dogs increases arterial pressure without impairment of renal function. Clin Exp Pharmacol Physiol 24:439–441
Lohmeier TE, Cowley AW Jr (1979) Hypertensive and renal effects of chronic low level intrarenal angiotensin infusion in the dog. Circ Res 44:154–160
Venegas-Pont M, Mathis KW, Iliescu R, Ray WH, Glover PH, Ryan MJ (2011) Blood pressure and renal hemodynamic responses to acute angiotensin II infusion are enhanced in a female mouse model of systemic lupus erythematosus. Am J Physiol 301:R1286–R1292
White CL, Pschorr J, Jacob IC, von Lutterotti N, Dahlheim H (1986) The effect of zinc in vivo and in vitro on the activities of angiotensin-converting enzyme and kininase-I in the plasma of rats. Biochem Pharmacol 35:2489–2493
Krege JH, Kim H-S, Moyer JS, Jennette JC, Peng L, Hiller SK, Smithies O (1997) Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension 29:150–157
Kamilic J, Lely AT, van Goor H, Buikema H, Tent H, Navis GJ, Korstanje R (2009) Differential ACE expression among tissues in allele-specific Wistar rat lines. Mamm Genome 20:170–179
Hsieh TJ, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Chan JS (2002) High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology 143:2975–2985
Ito S, Arima S, Ren YL, Juncos LA, Carretero OA (1993) Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 91:2012–2019
Kurihara N, Yanagisawa H, Sato M, Tien C-K, Wada O (2002) Increased renal vascular resistance in zinc-deficient rats: role of nitric oxide and superoxide. Clin Exp Pharmacol Physiol 29:1096–1104
Qiu C, Muchant D, Beierwaltes WH, Racusen L, Baylis C (1998) Evolution of chronic nitric oxide inhibition hypertension: relationship to renal function. Hypertension 31:21–26
Acknowledgments
We thank Dr. Akira Nishiyama (Department of Pharmacology, Kagawa University) for analyzing angiotensin II levels in the kidney.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kasai, M., Miyazaki, T., Takenaka, T. et al. Excessive Zinc Intake Increases Systemic Blood Pressure and Reduces Renal Blood Flow via Kidney Angiotensin II in Rats. Biol Trace Elem Res 150, 285–290 (2012). https://doi.org/10.1007/s12011-012-9472-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-012-9472-z
Keywords
- Excessive zinc intake
- Glomerular filtration rate
- Hypertension
- Renal blood flow
- Angiotensin II